首页> 外文期刊>Signal processing >Structure tensor total variation-regularized weighted nuclear norm minimization for hyperspectral image mixed denoising
【24h】

Structure tensor total variation-regularized weighted nuclear norm minimization for hyperspectral image mixed denoising

机译:高光谱图像混合降噪的结构张量总变化正则化加权核范数最小化

获取原文
获取原文并翻译 | 示例

摘要

Several band-by-band TV-regularized low rank based models have been proposed for Hyperspectral image (HSI) mixed denoising, which can exploit the spectral and spatial information simultaneously. However, these methods may lead to large fluctuations due to the noise and also create oil painting effects. Moreover, they only exploit the spatial information in a separated manner, which may negatively affect the performance of removing the noise with obvious structure, e.g., the deadline noise. To cope with the above problems, a novel Structure tensor Total Variation (STV)-regularized Weighted Nuclear Norm Minimization (STWNNM) model is proposed. To obtain the desired performance, three issues are included. First, the Weighted Nuclear Norm Minimization (WNNM) is adopted to utilize the spectral information by shrinking different eigenvalues with different weights. Second, the structure tensor is used to exploit the global spatial structure information within all bands simultaneously. Third, a convolution kernel is incorporated to obtain more local structure information from neighborhood pixels. Then, two different optimization strategies are proposed to solve the derived optimization problem. Both simulated and real data experiments illustrate the higher performance of the proposed STWNNM for HSI mixed denoising, by comparing with other state-of-the-art TV-regularized low rank based methods.
机译:针对高光谱图像(HSI)混合降噪,已经提出了几种基于波段的电视正则化低秩模型,这些模型可以同时利用光谱和空间信息。但是,这些方法可能会由于噪音而导致较大的波动,并且还会产生油画效果。而且,它们仅以分离的方式利用空间信息,这可能负面影响去除具有明显结构的噪声(例如,截止期限噪声)的性能。为了解决上述问题,提出了一种新的结构张量总变化(STV)正则化加权核模最小化(STWNNM)模型。为了获得所需的性能,包括了三个问题。首先,采用加权核范数最小化(WNNM)通过缩小具有不同权重的不同特征值来利用频谱信息。其次,结构张量用于同时利用所有频带内的全局空间结构信息。第三,卷积核被合并以从邻域像素中获得更多的局部结构信息。然后,提出了两种不同的优化策略来解决导出的优化问题。通过与其他最新的基于电视的低阶秩的方法进行比较,模拟和真实数据实验都证明了所建议的STWNNM在HSI混合降噪方面的更高性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号