机译:高光谱图像混合降噪的结构张量总变化正则化加权核范数最小化
Department of Control Science and Engineering, Harbin Institute of Technology, Harbin 150001, PR China;
Department of Control Science and Engineering, Harbin Institute of Technology, Harbin 150001, PR China;
Department of Control Science and Engineering, Harbin Institute of Technology, Harbin 150001, PR China;
Department of Control Science and Engineering, Harbin Institute of Technology, Harbin 150001, PR China;
Hyperspectral image denoising; Low rank; Structure Tensor Total Variation (STV); Nuclear Norm Minimization (NNM); Alternating Direction Method of Multipliers (ADMM);
机译:高光谱图像混合降噪的总变分正则加权核规范最小化
机译:高光谱图像去噪的空间光谱加权核规范最小化
机译:高光谱图像降噪的联合加权核范数和总变化正则化
机译:加权张量核范数最小化彩色图像去噪
机译:自适应光谱加权结构张量应用于高光谱图像的张量各向异性非线性扩散。
机译:使用稀疏变换学习和加权奇异值最小化的图像去噪
机译:联合加权张力Schatten $ p $ -norm和tensoR $ l_p $ -norm最小化图像去噪