首页> 外文期刊>Neurocomputing >Spatial-spectral weighted nuclear norm minimization for hyperspectral image denoising
【24h】

Spatial-spectral weighted nuclear norm minimization for hyperspectral image denoising

机译:高光谱图像去噪的空间光谱加权核规范最小化

获取原文
获取原文并翻译 | 示例

摘要

Hyperspectral images (HSIs) are inevitably corrupted by various kinds of noise due to the instrumental and environmental factors. This degradation of HSI data affects the subsequent applications of these images. Despite the extensive research conducted into HSI denoising, satisfactory results under heavy noise levels have not yet been obtained. Assuming that the latent clean HSI holds the low-rank (LR) property while the noisy component does not, we propose a two-step Spatial-Spectral Weighted Nuclear Norm Minimization (SSWNNM) algorithm for HSI Denoising. Considering the LR property across the spectra, a Weighted Nuclear Norm Minimization (WNNM) algorithm is conducted to recover the spectral LR structure. In the spatial domain, nonlocal similar cubic patches are found and stacked into an LR matrix, which contains the local detailed spatial texture information. We further utilize Multi-channel Weighted Nuclear Norm Minimization (MCWNNM) to recover this spatial LR matrix. Experiments conducted on simulated and real HSI data demonstrate that the proposed denoising method outperforms state-of-the-art methods, both in terms of visual quality and several quantitative assessment indices. (c) 2020 Elsevier B.V. All rights reserved.
机译:由于仪器和环境因素,高光谱图像(HSIS)不可避免地被各种噪声损坏。这种HSI数据的降低影响了这些图像的后续应用。尽管进行了广泛的研究,但在HSI去噪,尚未获得令人满意的噪音水平结果。假设潜在的清洁HSI持有低秩(LR)属性,而嘈杂的组件没有,我们提出了一种两步的空间光谱加权核标准最小化(SSWNNM)算法的HSI去噪。考虑到光谱上的LR性能,进行加权核规范最小化(WNNM)算法以恢复光谱LR结构。在空间域中,找到非识别类似的立方斑块并堆叠到LR矩阵中,该LR矩阵包含本地详细的空间纹理信息。我们进一步利用多通道加权核标准最小化(MCWNNM)来恢复该空间LR矩阵。对模拟和实际HSI数据进行的实验表明,所提出的去噪方法在视觉质量和几种定量评估指标方面优于最先进的方法。 (c)2020 Elsevier B.v.保留所有权利。

著录项

  • 来源
    《Neurocomputing》 |2020年第jul25期|271-284|共14页
  • 作者单位

    Wuhan Univ Natl Engn Res Ctr Multimedia Software Sch Comp Sci Wuhan Peoples R China|Wuhan Univ Inst Artificial Intelligence Wuhan Peoples R China;

    Wuhan Univ Natl Engn Res Ctr Multimedia Software Sch Comp Sci Wuhan Peoples R China|Wuhan Univ Inst Artificial Intelligence Wuhan Peoples R China;

    Yunnan Univ Sch Informat Sci & Engn Kunming 650504 Yunnan Peoples R China;

    Wuhan Univ State Key Lab Informat Engn Surveying Mapping & R Wuhan Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Restoration; Hyperspectral image denoising; Low-rank; Band similarity; Nonlocal similar cubic patches;

    机译:恢复;高光谱图像去噪;低级别;乐队相似度;非局部类似的立方斑块;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号