首页> 外文期刊>Signal processing >Image dehazing by artificial multiple-exposure image fusion
【24h】

Image dehazing by artificial multiple-exposure image fusion

机译:通过人工多次曝光图像融合进行图像去雾

获取原文
获取原文并翻译 | 示例

摘要

Bad weather conditions can reduce visibility on images acquired outdoors, decreasing their visual quality. The image processing task concerned with the mitigation of this effect is known as image dehazing. In this paper we present a new image dehazing technique that can remove the visual degradation due to haze without relying on the inversion of a physical model of haze formation, but respecting its main underlying assumptions. Hence, the proposed technique avoids the need of estimating depth in the scene, as well as costly depth map refinement processes. To achieve this goal, the original hazy image is first artificially under-exposed by means of a sequence of gamma-correction operations. The resulting set of multiply-exposed images is merged into a haze-free result through a multi-scale Laplacian blending scheme. A detailed experimental evaluation is presented in terms of both qualitative and quantitative analysis. The obtained results indicate that the fusion of artificially under-exposed images can effectively remove the effect of haze, even in challenging situations where other current image dehazing techniques fail to produce good-quality results. An implementation of the technique is open-sourced for reproducibility (https://github.com/agaldran/amef_dehazing).
机译:恶劣的天气条件会降低在户外获取的图像的可见度,从而降低其视觉质量。与减轻这种影响有关的图像处理任务称为图像去雾。在本文中,我们提出了一种新的图像去雾技术,该技术可以消除由于雾引起的视觉退化,而无需依赖雾形成的物理模型的反演,但要遵循其主要的基本假设。因此,提出的技术避免了估计场景中的深度以及昂贵的深度图细化过程的需要。为了实现这一目标,首先通过一系列伽玛校正操作对原始模糊图像进行人为曝光不足。通过多尺度拉普拉斯混合方案,将所得的一组多重曝光图像合并成无雾的结果。在定性和定量分析方面都进行了详细的实验评估。获得的结果表明,即使在其他当前图像去雾技术无法产生高质量结果的挑战性情况下,人工曝光不足图像的融合也可以有效消除雾度的影响。该技术的实现是开源的,以提高可重复性(https://github.com/agaldran/amef_dehazing)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号