首页> 外文期刊>Signal processing >Multilevel thresholding selection based on variational mode decomposition for image segmentation
【24h】

Multilevel thresholding selection based on variational mode decomposition for image segmentation

机译:基于变分模式分解的多级阈值选择算法

获取原文
获取原文并翻译 | 示例

摘要

Multilevel thresholding techniques based on gray histogram are usually computationally expensive for the image segmentation. In this paper, we propose a novel thresholding extraction method based on variational mode decomposition (VMD). The improved VMD is used to decompose the histogram non-recursively into several sub-modes for minimizing Otsu's objective function. Then, we can extract the thresholds easily by the minimum point search (MPS) method or the cross point search (CPS) method. The experimental results demonstrate that the proposed MPS scheme exhibits more excellent capability than CPS. Further, compared with other approaches namely particle swarm optimization algorithm (PSO), fuzzy c-means (FCM) algorithm and bacterial foraging (BF) algorithm, the proposed algorithm can get similar performance, but its computing speed is faster than others. Therefore, it could have some advantages in image preprocessing, such as fast target recognition and classification.
机译:对于图像分割,基于灰度直方图的多级阈值技术通常在计算上昂贵。在本文中,我们提出了一种新的基于变分模式分解(VMD)的阈值提取方法。改进的VMD用于将直方图非递归地分解为几个子模式,以使Otsu的目标函数最小化。然后,我们可以通过最小点搜索(MPS)方法或交叉点搜索(CPS)方法轻松提取阈值。实验结果表明,所提出的MPS方案比CPS具有更好的性能。此外,与粒子群优化算法(PSO),模糊c均值(FCM)算法和细菌觅食(BF)算法等其他方法相比,该算法可以获得类似的性能,但其计算速度比其他算法快。因此,它可以在图像预处理中具有一些优势,例如快速的目标识别和分类。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号