首页> 外文期刊>Expert Systems with Application >Multilevel thresholding selection based on the artificial bee colony algorithm for image segmentation
【24h】

Multilevel thresholding selection based on the artificial bee colony algorithm for image segmentation

机译:基于人工蜂群算法的图像分割多阈值选择

获取原文
获取原文并翻译 | 示例

摘要

Multilevel thresholding is an important technique for image processing and pattern recognition. The maximum entropy thresholding (MET) has been widely applied in the literature. In this paper, a new multilevel MET algorithm based on the technology of the artificial bee colony (ABC) algorithm is proposed: the maximum entropy based artificial bee colony thresholding (MEABCT) method. Four different methods are compared to this proposed method: the particle swarm optimization (PSO), the hybrid cooperative-comprehensive learning based PSO algorithm (HCOCLPSO), the Fast Otsu's method and the honey bee mating optimization (HBMO). The experimental results demonstrate that the proposed MEABCT algorithm can search for multiple thresholds which are very close to the optimal ones examined by the exhaustive search method. Compared to the other four thresholding methods, the segmentation results of using the MEABCT algorithm is the most, however, the computation time by using the MEABCT algorithm is shorter than that of the other four methods.
机译:多级阈值处理是图像处理和模式识别的重要技术。最大熵阈值(MET)已在文献中得到广泛应用。本文提出了一种基于人工蜂群(ABC)算法技术的多层MET算法:基于最大熵的人工蜂群阈值(MEABCT)方法。将四种不同的方法与该方法进行了比较:粒子群优化(PSO),基于混合协同综合学习的PSO算法(HCOCLPSO),快速Otsu方法和蜜蜂交配优化(HBMO)。实验结果表明,所提出的MEABCT算法可以搜索多个阈值,这些阈值与穷举搜索方法所检测的最优阈值非常接近。与其他四种阈值方法相比,使用MEABCT算法进行分割的结果最多,但是,使用MEABCT算法进行计算的时间比其他四种方法要短。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号