首页> 外文期刊>Signal processing >A Deep Residual convolutional neural network for facial keypoint detection with missing labels
【24h】

A Deep Residual convolutional neural network for facial keypoint detection with missing labels

机译:用于残缺标签的面部关键点检测的深度残差卷积神经网络

获取原文
获取原文并翻译 | 示例

摘要

AbstractKeypoint detection is critical in image recognitions. Deep learning such as convolutional neural network (CNN) has recently demonstrated its tremendous success in detecting image keypoints over conventional image processing methodologies. The deep learning solutions, however, heavily rely on labeling target images for their reliability and accuracy. Unfortunately, most image datasets do not have all labels marked. To address this problem, this paper presents an effective and novel deep learning solution,Masked Loss Residual Convolutional Neural Network(ML-ResNet), to facial keypoint detection on the datasets that have missing target labels. The core of ML-ResNet is amasked loss objective functionthat ignores the error in predicting themissingtarget keypoints in the output layer of a CNN. To compensate for the loss induced by the masked loss objective function that likely results in overfitting, ML-ResNet is designed of a data augmentation strategy to increase the number of training data. The performance of ML-ResNet has been evaluated on the image dataset from Kaggle Facial Keypoints Detection competition, which consists of 7049 training images, but with only 2140 images that have full target keypoints labeled. In the experiments, ML-ResNet is compared to a pioneer literature CNN facial keypoint detection work. The experiment results clearly show that the proposed ML-ResNet is robust and advantageous in training CNNs on datasets with missing target values. ML-ResNet can improve the learning time by 30% during the training and the detection accuracy by eight times in facial keypoint detection.
机译: 摘要 关键点检测对于图像识别至关重要。诸如卷积神经网络(CNN)之类的深度学习最近证明了它在检测图像关键点方面比常规图像处理方法学上的巨大成功。但是,深度学习解决方案在很大程度上依赖于标记目标图像的可靠性和准确性。不幸的是,大多数图像数据集并没有标记所有标签。为了解决这个问题,本文提出了一种有效且新颖的深度学习解决方案,蒙版损失残差卷积神经网络(ML-ResNet),用于对缺少目标的数据集进行面部关键点检测标签。 ML-ResNet的核心是一个蒙版损失目标函数,它忽略了预测输出的 目标关键点时的错误。 CNN。为了补偿由掩盖的损失目标函数引起的可能导致过度拟合的损失,ML-ResNet设计了数据增强策略以增加训练数据的数量。 ML-ResNet的性能已在Kaggle面部关键点检测比赛的图像数据集中进行了评估,该比赛由7049个训练图像组成,但只有2140个带有完整目标关键点的图像被标记。在实验中,将ML-ResNet与先驱文献CNN面部关键点检测工作进行了比较。实验结果清楚地表明,所提出的ML-ResNet在缺少目标值的数据集上训练CNN具有鲁棒性和优势。 ML-ResNet可以将训练过程中的学习时间提高30%,面部关键点检测的检测准确率提高了八倍。

著录项

  • 来源
    《Signal processing》 |2018年第3期|384-391|共8页
  • 作者单位

    School of Computer and Software, Nanjing University of Information Science and Technology,Department of Computer Science, Ball State University;

    Department of Computer Science, Ball State University;

    Department of Computer Science, Ball State University;

    Department of Computer Science, Ball State University;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Deep learning; Facial keypoint detection;

    机译:深度学习;面部关键点检测;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号