首页> 外文期刊>The Visual Computer >Unified convolutional neural network for direct facial keypoints detection
【24h】

Unified convolutional neural network for direct facial keypoints detection

机译:统一卷积神经网络可直接检测面部关键点

获取原文
获取原文并翻译 | 示例

摘要

We propose a novel approach to directly estimate the position of the facial keypoints via convolutional neural networks (CNN). Our method estimates the global position and the local positions from a unified CNN and combines them through a simplified optimization process. There are twofolds of advantages for our approach. First, the global geometrical position and the local detailed position of the facial keypoints are combined complementarily to avoid local minimums caused by occlusions and pose variations. Second, unlike the traditional method such as a cascade of multiple CNN, we propose a unified deep and large architecture network consisted by global position network and local position network. Our design shares most of computations for facial features between networks, and this efficient high-level features improves largely to the precise estimate of facial keypoints. We conduct comparative experiments with the state-of-the-art researches and commercial services. In experiments, our approach shows a remarkable performance.
机译:我们提出了一种新颖的方法,可通过卷积神经网络(CNN)直接估计面部关键点的位置。我们的方法通过统一的CNN估算全局位置和局部位置,并通过简化的优化过程将它们组合在一起。我们的方法有双重优势。首先,将面部关键点的整体几何位置和局部详细位置进行互补组合,以避免由于遮挡和姿势变化而导致的局部最小值。其次,与传统方法(如多个CNN的级联)不同,我们提出了一个由全球位置网络和本地位置网络组成的统一的深度和大型体系结构网络。我们的设计共享网络之间面部特征的大部分计算,并且这种有效的高级特征在很大程度上改善了对面部关键点的精确估计。我们使用最先进的研究和商业服务进行比较实验。在实验中,我们的方法显示了出色的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号