首页> 外文期刊>Signal processing >Outlier-robust tri-percentile parameter estimation of K-distributions
【24h】

Outlier-robust tri-percentile parameter estimation of K-distributions

机译:k分布的异常值 - 强大的三百分位参数估计

获取原文
获取原文并翻译 | 示例

摘要

K-distribution is one of the most popular sea clutter amplitude models where the scale and shape parameters reflect the power level and non-Gaussianity of the clutter. In real oceanic environments, the two spatial-temporally varying parameters are estimated from sea clutter data with outliers. Outliers are probably from sea-surface ships, reefs, or abnormal scattering phenomena. Existing moment-based, numerical maximum likelihood, and [zlog(z)]-based estimators are sensitive to outliers, which results in abrupt degradation of parameter estimation precision in real clutter environments. This paper proposes an outlier-robust tri-percentile parameter estimator of K-distributions. It is shown that the ratio of two percentiles is a monotonically decreasing function of the shape parameter and independent of the scale parameter. In this way, the shape parameter is estimated from the ratio of two sample percentiles by the look-up table method and interpolation method. Moreover, an empirical formula on the optimal setup of the two percentiles is given by numerical computation. Next, the scale parameter is estimated by the third sample percentile whose position depends on the estimated shape parameter. Finally, the tri-percentile estimator is evaluated by using simulated and measured data, showing that it is rather robust to outliers in simulated data and raw sea clutter data.
机译:K分布是最受欢迎的海洋杂波幅度模型之一,其中规模和形状参数反映了杂波的功率水平和非高斯度。在真实的海洋环境中,从具有异常值的海洋杂波数据估计了两个空间上变化的参数。异常值可能来自海面船,珊瑚礁或异常散射现象。基于时刻的基于矩的数值最大可能性和[zlog(z)]的估计器对异常值敏感,导致真实杂物环境中参数估计精度的突然劣化。本文提出了k分布的异常值 - 强大的三百分位数参数估计。结果表明,两个百分位的比率是形状参数的单调减小函数,并且独立于比例参数。以这种方式,通过查找表方法和插值方法从两个样本百分比的比率估计形状参数。此外,通过数值计算给出了两种百分位的最佳设置上的经验公式。接下来,缩放参数由第三个样本百分位估计,其位置取决于估计的形状参数。最后,通过使用模拟和测量数据来评估三百分位数估计器,表明它对模拟数据和原始海洋杂波数据中的异常值相当强大。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号