首页> 外文期刊>IEEE Transactions on Signal Processing >Recursive K-Distribution Parameter Estimation
【24h】

Recursive K-Distribution Parameter Estimation

机译:递归K分布参数估计

获取原文
获取原文并翻译 | 示例

摘要

Recursive estimation of the parameter of the K-distribution is studied and tested. The probability density function (pdf) of the K-distribution is seen as a mixture pdf allowing the application of Titterington's recursive expectation-maximization (EM) technique. Under mild conditions, the technique produces estimates that are strongly consistent and asymptotically normal. For the K-distribution, the complete data information matrix required by the recursive EM has an explicit form making the algorithm easy to implement. The algorithm is tested using K-distributed data with both constant and time-varying parameter. For the constant parameter case, recursive EM estimates are compared to numerical maximization of the likelihood. For the time-varying parameter case, recursive EM estimates are compared to estimates obtained using a fast routine from the literature and implemented by sliding a rectangular window over the observations.
机译:研究并测试了K分布参数的递归估计。 K分布的概率密度函数(pdf)被视为混合pdf,从而允许应用Titterington的递归期望最大化(EM)技术。在温和的条件下,该技术产生的估计值非常一致且渐近正常。对于K分布,递归EM所需的完整数据信息矩阵具有显式形式,使得该算法易于实现。使用具有常数和时变参数的K分布数据对算法进行测试。对于恒定参数的情况,将递归EM估计与似然的数值最大化进行比较。对于随时间变化的参数情况,将递归EM估计与使用快速例程从文献中获得的估计进行比较,并通过在观察结果上滑动矩形窗口来实现。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号