首页> 外文期刊>Signal processing >Joint sparse-collaborative representation to fuse hyperspectral and multispectral images
【24h】

Joint sparse-collaborative representation to fuse hyperspectral and multispectral images

机译:联合稀疏协作表示为熔断器高光谱和多光谱图像

获取原文
获取原文并翻译 | 示例

摘要

Representation based methods to fuse a low spatial resolution hyperspectral image (LS-HSI) and a high spatial resolution multispectral image (HS-MSI) for reconstructing a high spatial resolution hyperspectral image (HS-HSI) have attracted increasing interest in recent years. Existing representation based algorithms only emphasize the sparsity of data, ignoring the collaboration, which may cause fusion performance degradation. In this paper, we develop a novel fusion method based on joint sparse-collaborative representation (SCR) for LS-HSI and HS-MSI. The SCR method consists of three steps: 1) sparse and collaborative dictionaries are learned to extract the spectral information of the given LS-HSI from two perspectives; 2) the turbopixel based segmentation is used for obtaining unfixed-size patches to describe the complex local structure of the HS-MSI; 3) the joint sparse-collaborative representation model is established for patch representing to reconstruct the HS-HSI. Compared with existing representation based strategies, the SCR not only considers the data sparsity, but also preserves the collaboration reflecting correlations among different spectral bands. In addition, the CSR more sufficiently utilizes the context of the given data, relying on unfixed-size patch dividing with adaptive adjustment by the turbopixel based segmentation. Experimental results indicate that the SCR achieves better performance than several state-of-the-art algorithms.
机译:基于表示熔断低空间分辨率高光谱图像(LS-HSI)的方法和用于重建高空间分辨率高光谱图像(HS-HSI)的高空间分辨率多光谱图像(HS-HSI)近年来引起了越来越令人利益。基于现有的表示算法仅强调数据的稀疏性,忽略协作,这可能导致融合性能下降。在本文中,我们开发了一种基于LS-HSI和HS-MSI的联合稀疏协作表示(SCR)的新型融合方法。 SCR方法由三个步骤组成:1)学习稀疏和协作词典以从两个透视图中提取给定LS-HSI的光谱信息; 2)基于涡轮睫状体的分段用于获得未固定的斑块以描述HS-MSI的复杂局部结构; 3)建立联合稀疏协作表示模型,用于重建HS-HSI的补丁。与现有的基于表示的策略相比,SCR不仅考虑数据稀疏性,而且还保留了反映不同光谱带之间的相关的协作。此外,CSR更充分利用给定数据的上下文,依赖于基于涡轮旋涡的分割的自适应调整的未固定大小的补丁。实验结果表明,SCR比几种最先进的算法实现了更好的性能。

著录项

  • 来源
    《Signal processing》 |2020年第8期|107585.1-107585.12|共12页
  • 作者单位

    College of Automation Engineering Nanjing University of Aeronautics and Astronautics Nanjing 211106 China;

    College of Computer Science and Technology Nanjing University of Aeronautics and Astronautics Nanjing 211106 China School of Informatics and Computing Indiana University-Purdue University Indianapolis IN 46202 USA;

    College of Automation Engineering Nanjing University of Aeronautics and Astronautics Nanjing 211106 China;

    College of Automation Engineering Nanjing University of Aeronautics and Astronautics Nanjing 211106 China;

    College of Automation Engineering Nanjing University of Aeronautics and Astronautics Nanjing 211106 China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Fusion; Hyperspectral and multispectral images; Sparse and collaborative representation; Turbopixel based segmentation;

    机译:融合;高光谱和多光谱图像;稀疏和协作的代表;基于Turbopixel的分割;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号