首页> 外文OA文献 >Fusion of multispectral and hyperspectral images based on sparse representation
【2h】

Fusion of multispectral and hyperspectral images based on sparse representation

机译:基于稀疏表示的多光谱和高光谱图像融合

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This paper presents an algorithm based on sparse representation for fusing hyperspectral and multispectral images. The observed images are assumed to be obtained by spectral or spatial degradations of the high resolution hyperspectral image to be recovered. Based on this forward model, the fusion process is formulated as an inverse problem whose solution is determined by optimizing an appropriate criterion. To incorporate additional spatial information within the objective criterion, a regularization term is carefully designed,relying on a sparse decomposition of the scene on a set of dictionaryies. The dictionaries and the corresponding supports of active coding coef�cients are learned from the observed images. Then, conditionally on these dictionaries and supports, the fusion problem is solved by iteratively optimizing with respect to the target image (using the alternating direction method of multipliers) and the coding coefcients. Simulation results demonstrate the ef�ciency of the proposed fusion method when compared with the state-of-the-art.
机译:本文提出了一种基于稀疏表示的融合高光谱和多光谱图像的算法。假设观察到的图像是通过要恢复的高分辨率高光谱图像的光谱或空间退化获得的。基于此正向模型,将融合过程公式化为一个反问题,通过优化适当的准则确定其解。为了将其他空间信息合并到客观标准中,根据一组字典上场景的稀疏分解,精心设计了正则化项。主动编码系数的字典和相应支持是从观察到的图像中学习的。然后,在这些字典和支持的条件下,通过对目标图像(使用乘法器的交替方向方法)和编码系数进行迭代优化来解决融合问题。仿真结果证明了与现有技术相比所提出的融合方法的效率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号