首页> 外文期刊>Signal processing >Multi-marginal optimal transport using partial information with applications in robust localization and sensor fusion
【24h】

Multi-marginal optimal transport using partial information with applications in robust localization and sensor fusion

机译:使用部分信息的多边际最优运输及其在稳健的定位和传感器融合中的应用

获取原文
获取原文并翻译 | 示例

摘要

During recent decades, there has been a substantial development in optimal mass transport theory and methods. In this work, we consider multi-marginal problems wherein only partial information of each marginal is available, a common setup in many inverse problems in, e.g., remote sensing and imaging. By considering an entropy regularized approximation of the original transport problem, we propose an algorithm corresponding to a block-coordinate ascent of the dual problem, where Newton's algorithm is used to solve the sub-problems. In order to make this computationally tractable for large-scale settings, we utilize the tensor structure that arises in practical problems, allowing for computing projections of the multi-marginal transport plan using only matrix-vector operations of relatively small matrices. As illustrating examples, we apply the resulting method to tracking and barycenter problems in spatial spectral estimation. In particular, we show that the optimal mass transport framework allows for fusing information from different time steps, as well as from different sensor arrays, also when the sensor arrays are not jointly calibrated. Furthermore, we show that by incorporating knowledge of underlying dynamics in tracking scenarios, one may arrive at accurate spectral estimates, as well as faithful reconstructions of spectra corresponding to unobserved time points.
机译:在最近的几十年中,最佳质量传输理论和方法有了长足的发展。在这项工作中,我们考虑了多边际问题,其中每个边际只有部分信息可用,这是例如遥感和成像等许多反问题中的常见设置。通过考虑原始运输问题的熵正则化近似,我们提出了一种与对偶问题的块坐标上升相对应的算法,其中牛顿算法用于解决子问题。为了使该计算在大规模设置中易于处理,我们利用实际问题中出现的张量结构,允许仅使用相对较小矩阵的矩阵矢量运算来计算多边际运输计划的投影。作为示例,我们将所得方法应用于空间光谱估计中的跟踪和重心问题。特别是,我们显示出最佳的质量传输框架允许融合来自不同时间步长以及来自不同传感器阵列的信息,而且当传感器阵列未进行联合校准时也是如此。此外,我们表明,通过在跟踪场景中结合基本动力学知识,可以得出准确的频谱估计值,以及忠实地重构与未观察到的时间点相对应的频谱。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号