首页> 外文期刊>Signal processing >Active contours driven by adaptive functions and fuzzy c-means energy for fast image segmentation
【24h】

Active contours driven by adaptive functions and fuzzy c-means energy for fast image segmentation

机译:由自适应函数和模糊c均值能量驱动的主动轮廓用于快速图像分割

获取原文
获取原文并翻译 | 示例

摘要

The shortcoming of geometric active contours is that they are extremely sensitive to positions of initialization. Initial contours of the distance regularized level set evolution model must be set inside or outside target completely. In addition, the model is prone to problems of falling into false boundary, leaking from weak edge and poor anti-noise ability. In this paper, we propose a robust active contour model driven by adaptive functions (including an adaptive edge indicator function and adaptive sign function) and fuzzy c-means energy. Utilize the adaptive edge indicator function which is composed of image intensity information to substitute traditional edge indicator function in the area term. Active contours can expand or shrink from initialization automatically, which improves the disadvantages of poor robustness to initialization and unidirectional movement. Due to the adaptive sign function and fuzzy c-means energy, the problems of slow convergence and leaking from weak edge have been solved. Moreover, a novel distance regularized term (mainly a potential function and evolution speed function) is proposed to make evolution more stable. Experimental results have proved that our model can segment images with intensity inhomogeneity effectively. Compared with other classic models, the proposed model not only shortens time spent and improves segmentation accuracy, but also shows a better robustness to initialization. (C) 2019 Elsevier B.V. All rights reserved.
机译:几何有效轮廓的缺点是它们对初始化位置非常敏感。距离正则化水平集演化模型的初始轮廓必须完全设置在目标内部或外部。此外,该模型还容易陷入虚假边界,从薄弱的边缘泄漏和抗噪能力差的问题。在本文中,我们提出了由自适应函数(包括自适应边缘指示符函数和自适应符号函数)和模糊c均值能量驱动的鲁棒主动轮廓模型。利用由图像强度信息组成的自适应边缘指示符功能来代替传统的边缘指示符功能。活动轮廓可以从初始化开始自动扩展或收缩,从而改善了鲁棒性差,无法初始化和单向移动的缺点。由于具有自适应符号功能和模糊的c均值能量,解决了收敛速度慢和弱边缘泄漏的问题。此外,提出了一种新颖的距离正则项(主要是势函数和进化速度函数)以使进化更加稳定。实验结果证明,该模型可以有效地分割强度不均匀的图像。与其他经典模型相比,所提出的模型不仅缩短了花费的时间并提高了分割精度,而且还显示出更好的初始化鲁棒性。 (C)2019 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号