首页> 外文期刊>Signal processing >Active contours driven by adaptive functions and fuzzy c-means energy for fast image segmentation
【24h】

Active contours driven by adaptive functions and fuzzy c-means energy for fast image segmentation

机译:通过自适应功能驱动的活动轮廓和用于快速图像分割的模糊C-MEASE能量

获取原文
获取原文并翻译 | 示例

摘要

The shortcoming of geometric active contours is that they are extremely sensitive to positions of initialization. Initial contours of the distance regularized level set evolution model must be set inside or outside target completely. In addition, the model is prone to problems of falling into false boundary, leaking from weak edge and poor anti-noise ability. In this paper, we propose a robust active contour model driven by adaptive functions (including an adaptive edge indicator function and adaptive sign function) and fuzzy c-means energy. Utilize the adaptive edge indicator function which is composed of image intensity information to substitute traditional edge indicator function in the area term. Active contours can expand or shrink from initialization automatically, which improves the disadvantages of poor robustness to initialization and unidirectional movement. Due to the adaptive sign function and fuzzy c-means energy, the problems of slow convergence and leaking from weak edge have been solved. Moreover, a novel distance regularized term (mainly a potential function and evolution speed function) is proposed to make evolution more stable. Experimental results have proved that our model can segment images with intensity inhomogeneity effectively. Compared with other classic models, the proposed model not only shortens time spent and improves segmentation accuracy, but also shows a better robustness to initialization. (C) 2019 Elsevier B.V. All rights reserved.
机译:几何活动轮廓的缺点是它们对初始化的位置非常敏感。距离正常化级别设置演化模型的初始轮廓必须完全设置内部或外部目标。此外,该模型容易陷入假边界的问题,从弱边缘泄漏,抗噪声能力差。在本文中,我们提出了一种由自适应功能(包括自适应边缘指示器功能和自适应标志功能)驱动的强大的主动轮廓模型和模糊C-均值能量。利用由图像强度信息组成的自适应边缘指示器功能,以替换区域项中的传统边缘指示灯函数。活动轮廓可以自动扩展或缩小初始化,这提高了初始化和单向运动难度差的缺点。由于自适应符号功能和模糊C型能量,已经解决了慢收敛缓慢和弱边缘泄漏的问题。此外,提出了一种新的距离正规术语(主要是潜在的功能和演化速度函数),以使进化更稳定。实验结果证明,我们的模型可以有效地将图像分段为强度的不均匀性。与其他经典模型相比,所提出的模型不仅缩短了花费的时间并提高分割精度,而且还显示出更好的初始化的鲁棒性。 (c)2019 Elsevier B.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号