首页> 外文期刊>Signal Processing, IET >Distributed sparse diffusion estimation with reduced communication cost
【24h】

Distributed sparse diffusion estimation with reduced communication cost

机译:降低通信成本的分布式稀疏扩散估计

获取原文
获取原文并翻译 | 示例

摘要

The issue considered in the current study is the problem of adaptive distributed estimation based on diffusion strategy which can exploit sparsity in improving estimation error and reducing communications. It has been shown that distributed estimation leads to a good performance in terms of the error value, convergence rate, and robustness against node and link failures in wireless sensor networks. However, the main focus of many works in the field of distributed estimation research is on convergence speed and estimation error, neglecting the fact that communications among the nodes require a lot of transmissions. In this work, the focus is on a solution based on sparse diffusion least mean squares (LMS) algorithm, and a new version of sparse diffusion LMS algorithm is proposed which takes both communications and error cost into account. Also, the computation complexity and communication cost for every node of the network, as well as performance analysis of the proposed strategy, is provided. The performance of the proposed method in comparison with the existing methods is illustrated by means of simulations in terms of computational and communicational cost, and flexibility to signal changes.
机译:当前研究中考虑的问题是基于扩散策略的自适应分布式估计问题,该方法可以利用稀疏性来改善估计误差并减少通信。已经表明,分布式估计在误差值,收敛速度以及针对无线传感器网络中的节点和链路故障的鲁棒性方面具有良好的性能。然而,在分布式估计研究领域中,许多工作的主要重点是收敛速度和估计误差,而忽略了节点之间的通信需要大量传输的事实。在这项工作中,重点是基于稀疏扩散最小均方(LMS)算法的解决方案,并提出了同时考虑通信和错误成本的新版本的稀疏扩散LMS算法。此外,还提供了网络每个节点的计算复杂性和通信成本,以及所提出策略的性能分析。通过仿真,在计算和通信成本以及信号变化的灵活性方面,说明了所提出方法与现有方法相比的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号