首页> 外文期刊>Signal Processing, IET >Using genetic algorithms and k-nearest neighbour for automatic frequency band selection for signal classification
【24h】

Using genetic algorithms and k-nearest neighbour for automatic frequency band selection for signal classification

机译:使用遗传算法和k近邻算法自动选择频带进行信号分类

获取原文
获取原文并翻译 | 示例

摘要

The classification of signals is usually based on the extraction of various features that subsequently will be used as an input to a classifier. These features are extracted as a result of the experts' prior knowledge, which may often involve a lack of the information necessary for an accurate classification in all cases. This study proposes a new technique, in which a genetic algorithm is used to automatically extract frequency-domain features from a set of signals, with no need of prior knowledge. This allows, first, to achieve greater accuracy in the classification of signals, and, secondly, to discover new data on the signals to be classified. This system was used to solve a well-known problem: classification of electroencephalogram (EEG) signals, and its results show a better performance in comparison with other works on the same problem.
机译:信号的分类通常基于各种特征的提取,这些特征随后将用作分类器的输入。这些特征是根据专家的先验知识而提取的,在所有情况下,这些知识通常可能会缺少准确分类所必需的信息。这项研究提出了一种新技术,其中使用遗传算法无需先验知识即可自动从一组信号中提取频域特征。首先,这可以实现信号分类的更高准确性,其次,可以发现要分类的信号的新数据。该系统用于解决一个众所周知的问题:脑电图(EEG)信号的分类,其结果显示出比相同问题的其他作品更好的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号