首页> 外文期刊>Signal Processing, IET >Asynchronous processing of sparse signals
【24h】

Asynchronous processing of sparse signals

机译:稀疏信号的异步处理

获取原文
获取原文并翻译 | 示例

摘要

Unlike synchronous processing, asynchronous processing is more efficient in biomedical and sensing networks applications as it is free from aliasing constraints and quantization error in the amplitude, it allows continuous-time processing and more importantly data is only acquired in significant parts of the signal. We consider signal decomposers based on the asynchronous sigma delta modulator (ASDM), a non-linear feedback system that maps the signal amplitude into the zero-crossings of a binary output signal. The input, the zero-crossings and the ASDM parameters are related by an integral equation making the signal reconstruction difficult to implement. Modifying the model for the ASDM, we obtain a recursive equation that permits to obtain the non-uniform samples from the zero-time crossing values. Latticing the joint time-frequency space into defined frequency bands, and time windows depending on the scale parameter different decompositions are possible. We present two cascade low- and high-frequency decomposers, and a bank-of-filters parallel decomposer. This last decomposer using the modified ASDM behaves like a asynchronous analog to digital converter, and using an interpolator based on Prolate Spheroidal Wave functions allows reconstruction of the original signal. The asynchronous approaches proposed here are well suited for processing signals sparse in time, and for low-power applications.
机译:与同步处理不同,异步处理在生物医学和传感网络应用中效率更高,因为它没有混叠约束和幅度量化误差,它允许连续时间处理,更重要的是仅在信号的重要部分中采集数据。我们考虑基于异步sigma delta调制器(ASDM)的信号分解器,该系统是一种非线性反馈系统,可将信号幅度映射到二进制输出信号的零交叉点。输入,过零和ASDM参数由一个积分方程式关联,从而使信号重构难以实现。修改ASDM模型,我们获得了一个递归方程,该方程允许从零时间交叉值获得非均匀样本。将联合时频空间划分为定义的频带,并且时间窗取决于比例参数,可以进行不同的分解。我们提出了两个级联的低频和高频分解器,以及一组滤波器并联分解器。使用修改后的ASDM的最后一个分解器的行为类似于异步模数转换器,并且使用基于Proten Spheroidal Wave函数的插值器可以重建原始信号。这里提出的异步方法非常适合处理时间稀疏的信号以及低功耗应用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号