首页> 外文OA文献 >Asynchronous Representation and Processing of Analog Sparse Signals Using a Time-Scale Framework
【2h】

Asynchronous Representation and Processing of Analog Sparse Signals Using a Time-Scale Framework

机译:使用时标框架的模拟稀疏信号的异步表示和处理

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this dissertation we investigate the problem of asynchronous representation and processing of analog sparse signals using a time-scale framework. Recently, in the design of signal representations the focus has been on the use of application-driven constraints for optimality purposes. Appearing in many fields such as neuroscience, implantable biomedical diagnostic devices, and sensor network applications, sparse or burst--like signals are of great interest.ududA common challenge in the representation of such signals is that they exhibit non--stationary behavior with frequency--varying spectra. By ignoring that the maximum frequency of their spectra is changing with time, uniformly sampling sparse signals collects samples in quiescent segments and results in high power dissipation. Also, continuous monitoring of signals challenges data acquisition, storage, and processing; especially if remote monitoring is desired, as this would require that a large number of samples be generated, stored and transmitted. Power consumption and the type of processing imposed by the size of the devices in the aforementioned applications has motivated the use of asynchronous approaches in our research. First, we work on establishing a new paradigm for the representation of analog sparse signals using a time-frequency representation. Second, we develop a scale-based signal decomposition framework which uses filter-bank structures for the representation-analysis-compression scheme of the sparse information. Using an asynchronous signal decomposition scheme leads to reduced computational requirements and lower power consumption; thus it is promising for hardware implementation. In addition, the proposed algorithm does not require prior knowledge of the bandwidth of the signal and the effect of noise can still be alleviated. Finally, we consider the synthesis step, where the target signal is reconstructed from compressed data. We implement a perfect reconstruction filter bank based on Slepian wavelets to use in the reconstruction of sparse signals from non--uniform samples.ududIn this work, experiments on primary biomedical signal applications, such as electrocardiogram (EEG), swallowing signals and heart sound recordings have achieved significant improvements over traditional methods in the sensing and processing of sparse data. The results are also promising in applications including compression and denoising.
机译:本文研究了使用时标框架的异步稀疏信号的异步表示和处理问题。近来,在信号表示的设计中,重点是为了最佳目的使用应用程序驱动的约束。稀疏或爆裂样信号出现在神经科学,可植入生物医学诊断设备和传感器网络应用等许多领域,引起了人们的极大兴趣。 ud ud表示此类信号的常见挑战是它们表现出非平稳的随频率变化的频谱的行为。通过忽略其频谱的最大频率随时间变化,对稀疏信号进行均匀采样可以收集静态段中的样本,并导致高功耗。同样,连续监视信号也对数据采集,存储和处理提出了挑战。特别是在需要远程监视的情况下,因为这将需要生成,存储和传输大量样本。在上述应用中,功耗和设备尺寸所带来的处理类型促使我们在研究中使用异步方法。首先,我们致力于建立一种使用时频表示法来表示模拟稀疏信号的新范例。其次,我们开发了一种基于尺度的信号分解框架,该框架将滤波器组结构用于稀疏信息的表示-分析-压缩方案。使用异步信号分解方案可减少计算需求并降低功耗。因此对于硬件实现是有希望的。另外,所提出的算法不需要先验信号带宽,并且仍然可以减轻噪声的影响。最后,我们考虑合成步骤,其中从压缩数据中重构目标信号。我们基于Slepian小波实现了一个完美的重建滤波器组,可用于重建非均匀样本中的稀疏信号。 ud ud在这项工作中,我们进行了主要生物医学信号应用的实验,例如心电图(EEG),吞咽信号和在稀疏数据的感测和处理方面,心音记录已比传统方法有了重大改进。该结果在包括压缩和去噪的应用中也很有希望。

著录项

  • 作者

    Can-Cimino Azime;

  • 作者单位
  • 年度 2014
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号