首页> 外文期刊>Signal Processing, IET >Modified coherence-based dictionary learning method for speech enhancement
【24h】

Modified coherence-based dictionary learning method for speech enhancement

机译:改进的基于一致性的语音学习词典学习方法

获取原文
获取原文并翻译 | 示例

摘要

This paper presents a new method for speech enhancement based on a dictionary learning method. The proposed approach is based on using coherence measure in dictionary learning. Data required for better fitting to atoms in sparse representation of noise is provided by a noise estimation algorithm that causes noise dictionary to be trained with the same data size as speech signal. To decrease coherence between dictionaries after the training step, a new method is applied to yield incoherent dictionaries. In sparse representation of speech data, the highest energy atoms of noise dictionary are replaced with the lowest energy atoms, under certain conditions. A similar replacement can happen in sparse representation of noise data. Furthermore, in this paper, only one noise dictionary, chosen by a classification method, is used in speech enhancement step, resulting in a faster algorithm. Objective and subjective measures are used for evaluating the simulation results. According to experimental results, the proposed algorithm has been found superior in performance and computation overhead in comparison with the earlier methods in this context. Moreover, this method achieves significantly better results compared with baseline methods such as multi-band and geometric spectral subtraction.
机译:本文提出了一种基于字典学习方法的语音增强新方法。所提出的方法是基于在字典学习中使用一致性度量的。噪声估计算法提供了在噪声的稀疏表示中更好地适合原子所需的数据,该算法可使噪声字典以与语音信号相同的数据大小进行训练。为了减少训练步骤后词典之间的连贯性,采用了一种新方法来产生不连贯的词典。在语音数据的稀疏表示中,在某些条件下,噪声字典的最高能量原子被最低能量原子取代。在噪声数据的稀疏表示中可能发生类似的替换。此外,在本文中,仅一种通过分类方法选择的噪声字典被用于语音增强步骤,从而产生了更快的算法。客观和主观措施用于评估模拟结果。根据实验结果,在这种情况下,与早期的方法相比,该算法在性能和计算开销上都更为出色。此外,与基线方法(例如多频带和几何谱减法)相比,该方法可获得明显更好的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号