首页> 外文期刊>Neurocomputing >Dictionary learning enhancement framework: Learning a non-linear mapping model to enhance discriminative dictionary learning methods
【24h】

Dictionary learning enhancement framework: Learning a non-linear mapping model to enhance discriminative dictionary learning methods

机译:词典学习增强框架:学习非线性映射模型以增强判别词典学习方法

获取原文
获取原文并翻译 | 示例

摘要

In this paper, a new framework is presented to enhance the reconstruction and discrimination capabilities of existing discriminative dictionary learning methods. In the proposed framework, a non-linear mapping model is introduced to learn a feature space in a way that any standard discriminative dictionary learning algorithms could achieve higher classification accuracies. The proposed feature mapping process targets to boost the standard dictionary learning methods by facilitating their optimization process. The mapping model uses a modified autoencoder network to provide a higher level of reconstruction and discrimination capabilities for the discriminative dictionary learning methods. The proposed dictionary learning enhancement (DLE) framework could be applied to any discriminative dictionary learning methods with the embedded discriminative term in their objective functions. Our experiments on several real-world image datasets demonstrate that the proposed framework could improve the classification accuracies of standard discriminative dictionary learning methods. (C) 2019 Elsevier B.V. All rights reserved.
机译:在本文中,提出了一个新的框架来增强现有判别词典学习方法的重构和判别能力。在提出的框架中,引入了一种非线性映射模型来学习特征空间,从而使任何标准的判别词典学习算法都可以实现更高的分类精度。所提出的特征映射过程旨在通过促进标准词典学习方法的优化过程来增强它们。映射模型使用改进的自动编码器网络为判别词典学习方法提供更高级别的重构和判别能力。所提出的字典学习增强(DLE)框架可以应用于在其目标函数中具有嵌入式区分性术语的任何区分性字典学习方法。我们在几个真实世界的图像数据集上的实验表明,该框架可以提高标准判别词典学习方法的分类准确性。 (C)2019 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号