首页> 外文期刊>Signal Processing, IET >Coherence-based analysis of modified orthogonal matching pursuit using sensing dictionary
【24h】

Coherence-based analysis of modified orthogonal matching pursuit using sensing dictionary

机译:基于感知字典的修正正交匹配追踪的相干分析

获取原文
获取原文并翻译 | 示例

摘要

Compressed sensing (CS) has attracted considerable attention in signal processing because of its advantage of recovering sparse signals with lower sampling rates than the Nyquist rates. Greedy pursuit algorithms such as orthogonal matching pursuit (OMP) are well-known recovery algorithms in CS. In this study, the authors study a modified OMP proposed by Schnass ., which uses a special sensing dictionary to identify the support of a sparse signal while maintaining the same computational complexity. The performance guarantee of this modified OMP in recovering the support of a sparse signal is analysed in the framework of mutual (cross) coherence. Furthermore, they discuss the modified OMP in the case of bounded noise and Gaussian noise, and show that the performance of the modified OMP in the presence of noise relies on the mutual (cross) coherence and the minimum magnitude of the non-zero elements of the sparse signal. Finally, simulations are constructed to demonstrate the performance of the modified OMP.
机译:压缩感测(CS)由于其以比Nyquist速率低的采样率恢复稀疏信号的优势而在信号处理中引起了广泛关注。诸如正交匹配追踪(OMP)之类的贪婪追踪算法是CS中众所周知的恢复算法。在这项研究中,作者研究了Schnass。提出的一种经过修改的OMP,该OMP使用特殊的感应字典来识别稀疏信号的支持,同时保持相同的计算复杂性。在相互(交叉)相干的框架下,分析了这种改进的OMP在恢复稀疏信号支持方面的性能保证。此外,他们讨论了在有界噪声和高斯噪声情况下的改进OMP,并表明在存在噪声的情况下,改进OMP的性能取决于相干(互)相干和非零元素的最小幅度。稀疏信号。最后,通过仿真来证明改进的OMP的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号