首页> 外文期刊>IEEE transactions on industrial informatics >Transient Feature Extraction by the Improved Orthogonal Matching Pursuit and K-SVD Algorithm With Adaptive Transient Dictionary
【24h】

Transient Feature Extraction by the Improved Orthogonal Matching Pursuit and K-SVD Algorithm With Adaptive Transient Dictionary

机译:通过改进的正交匹配追求和K-SVD算法利用自适应瞬态词典提取瞬态特征

获取原文
获取原文并翻译 | 示例

摘要

To detect the incipient faults of rotating parts used in electromechanical systems widely, a novel transient feature extraction method based on the improved orthogonal matching pursuit (OMP) and one-dimensional K-SVD algorithm is explored in this paper. First, the stopping criterion of adaptive spark is developed, and then the corresponding OMP algorithm is used to remove the modulated and harmonic signals adaptively. Second, the residual signal is reformulated as a signal matrix by period segmentation and circulating shift, and the initial transient dictionary is constructed via the time-domain average technique. Subsequently, a novel K-SVD algorithm is proposed to get the optimized transient dictionary for the one-dimensional signal. Finally, the repetitive transient signal is recovered by the optimized dictionary. The simulated and experimental results show that the proposed method can not only much faster extract the fault characteristics than the traditional K-SVD method, but also more accurately detect the repetitive transients than the infogram method and the traditional K-SVD method.
机译:为了广泛地检测机电系统中使用的旋转部件的初始故障,本文探讨了基于改进的正交匹配追踪(OMP)和一维k-SVD算法的新型瞬态特征提取方法。首先,开发了自适应火花的停止标准,然后使用相应的OMP算法自适应地去除调制和谐波信号。其次,剩余信号被周期分割和循环移位重新重新重新重整为信号矩阵,并且通过时域平均技术构建初始瞬态词典。随后,提出了一种新颖的K-SVD算法以获得针对一维信号的优化瞬态词典。最后,通过优化的字典恢复重复瞬态信号。模拟和实验结果表明,该方法不仅可以提取比传统的K-SVD方法更快的提取故障特性,而且比传统的k-svd方法更准确地检测重复瞬变和传统的K-SVD方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号