首页> 外文期刊>Instrumentation and Measurement, IEEE Transactions on >Transients Extraction Based on Averaged Random Orthogonal Matching Pursuit Algorithm for Machinery Fault Diagnosis
【24h】

Transients Extraction Based on Averaged Random Orthogonal Matching Pursuit Algorithm for Machinery Fault Diagnosis

机译:基于平均随机正交匹配追踪算法的瞬态信号提取在机械故障诊断中的应用

获取原文
获取原文并翻译 | 示例

摘要

Sparse representation based on matching pursuit (MP) algorithm is one of the effective methods for the extraction of weak feature contaminated by heavy noise. However, the optimal iterative threshold and iterations of MP algorithm are difficult to be determined and the sparsest representation is difficult to obtain for pursuit algorithms. In order to reduce the influence of the threshold and iterations on the performance of MP and obtain appropriate results without seeking the sparsest representation, a new transient feature extraction technique named averaged random orthogonal MP (AROMP) algorithm is proposed. In the proposed method, random orthogonal MP algorithm, which is a greedy algorithm to match the atoms with probability, is utilized repeatedly to generate a group of competitive representations for the mechanical vibration signal. Then by averaging these solutions, the estimated representation vector can be obtained to represent the vibration signal and then transients can be extracted from the noisy signal. The simulation study and experimental analysis show that transients can be extracted effectively from the noisy vibration signal. And comparison results between the proposed method and orthogonal MP show that the proposed algorithm is less dependent on iterations and can obtain a better performance for transients extraction. Comparisons between the proposed algorithm and spectral kurtosis also show the superiority of the proposed method.
机译:基于匹配追踪(MP)算法的稀疏表示是提取受重噪声污染的弱特征的有效方法之一。然而,MP算法的最优迭代阈值和迭代难以确定,追赶算法难以获得最稀疏的表示。为了减少阈值和迭代次数对MP性能的影响,并在不寻求最稀疏表示的情况下获得适当的结果,提出了一种新的瞬时特征提取技术,称为平均随机正交MP(AROMP)算法。在提出的方法中,随机正交MP算法是一种贪婪算法,用于将原子与概率进行匹配,该算法被反复利用以生成一组竞争性表示形式的机械振动信号。然后,通过平均这些解,可以获得估计的表示矢量来表示振动信号,然后可以从噪声信号中提取瞬态信号。仿真研究和实验分析表明,可以从噪声振动信号中有效地提取瞬态信号。所提方法与正交MP的比较结果表明,所提算法对迭代的依赖性较小,能够获得较好的瞬态提取性能。所提算法与频谱峰度的比较也表明了所提方法的优越性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号