首页> 外文期刊>Signal Processing, IET >Rhythm-based features for classification of focal and non-focal EEG signals
【24h】

Rhythm-based features for classification of focal and non-focal EEG signals

机译:基于节奏的特征,用于对局灶性和非局灶性脑电信号进行分类

获取原文
获取原文并翻译 | 示例

摘要

Electroencephalogram (EEG) contains five rhythms, which provide details about various activities of brain. These rhythms are separated using Hilbert–Huang transform for classification of focal and non-focal EEG signals. For this, the EEG signal is disintegrated into narrow bands intrinsic mode functions (IMFs) using empirical mode decomposition, and analytic representation of IMFs is computed by Hilbert transformation that helps to extract instantaneous frequencies of respective IMFs. Frequency bands of EEG signals known as rhythms are separated from analytic IMFs using instantaneous frequencies. Two efficient parameters Pearson product-moment correlation coefficient and Spearman rank correlation coefficient extracted from the rhythms are used with different kernel functions of least-squares support vector machine for the classification of focal and non-focal EEG signals. Thus, obtained results show improved performance of proposed method as compared to other existing methods.
机译:脑电图(EEG)包含五个节律,提供有关大脑各种活动的详细信息。使用Hilbert-Huang变换将这些节律分开,以对聚焦和非聚焦EEG信号进行分类。为此,使用经验模式分解将EEG信号分解为窄带固有模式函数(IMF),并通过希尔伯特变换计算IMF的解析表示形式,这有助于提取各个IMF的瞬时频率。使用瞬时频率将称为节奏的EEG信号频段与分析IMF分开。从节奏中提取的两个有效参数Pearson乘积矩相关系数和Spearman秩相关系数与最小二乘支持向量机的不同核函数配合使用,用于对聚焦和非聚焦EEG信号进行分类。因此,获得的结果表明,与其他现有方法相比,该方法的性能有所提高。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号