机译:基于节奏的特征,用于对局灶性和非局灶性脑电信号进行分类
PDPM Indian Institute of Information Technology, Design and Manufacturing Jabalpur, India;
PDPM Indian Institute of Information Technology, Design and Manufacturing Jabalpur, India;
PDPM Indian Institute of Information Technology, Design and Manufacturing Jabalpur, India;
PDPM Indian Institute of Information Technology, Design and Manufacturing Jabalpur, India;
Indian Institute Technology Roorkee, India;
feature extraction; electroencephalography; Hilbert transforms; signal classification; signal representation; correlation methods; support vector machines; least squares approximations; medical signal processing;
机译:使用混合特征和支持向量机的焦点和非焦点脑电图信号的分类和辨别
机译:使用EMD-DWT域中基于熵的特征对局灶性和非局灶性EEG信号进行区分和分类
机译:时频域深卷积神经网络,用于局灶性和非焦点EEG信号的分类
机译:不同特征对局灶性和非局灶性脑电信号分类的影响
机译:使用机器学习的游戏中用户状态的EEG信号分类
机译:使用快速Walsh-Hadamard变换和人工神经网络检测焦距和非焦型脑电图信号
机译:通过计算IMF的2D-PSR的区域焦点和非焦点EEG信号分类