首页> 外文期刊>Signal and Information Processing over Networks, IEEE Transactions on >Recursive Tensor Subspace Tracking for Dynamic Brain Network Analysis
【24h】

Recursive Tensor Subspace Tracking for Dynamic Brain Network Analysis

机译:动态脑网络分析的递归张量子空间跟踪

获取原文
获取原文并翻译 | 示例

摘要

Recent years have seen a rapid growth in computational methods for a better understanding of functional connectivity brain networks constructed from neuroimaging data. Most of the current work has been limited to static functional connectivity networks (FCNs), where the relationships between different brain regions is assumed to be stationary. Recent work indicates that functional connectivity is a dynamic process over multiple time scales and the dynamic formation and dissolution of connections plays a key role in cognition, memory, and learning. In the proposed work, we introduce a tensor-based approach for tracking dynamic functional connectivity networks. The proposed framework introduces a robust low-rank+sparse structure learning algorithm for tensors to separate the low-rank community structure of connectivity networks from sparse outliers. The proposed framework is used to both identify change points, where the low-rank community structure of the FCN changes significantly, and summarize this community structure within each time interval. The proposed framework is applied to the study of cognitive control from electroencephalogram data during a Flanker task.
机译:近年来,为了更好地理解由神经影像数据构建的功能连接性大脑网络,计算方法迅速发展。当前的大部分工作仅限于静态功能连接网络(FCN),其中假定不同大脑区域之间的关系是固定的。最近的工作表明,功能连接是在多个时间尺度上的动态过程,连接的动态形成和消解在认知,记忆和学习中起着关键作用。在拟议的工作中,我们介绍了一种基于张量的方法来跟踪动态功能连接网络。提出的框架为张量引入了鲁棒的低秩+稀疏结构学习算法,以将连通性网络的低秩社区结构与稀疏离群值分开。提议的框架可用于识别FCN的低级社区结构显着变化的更改点,并在每个时间间隔内总结此社区结构。拟议的框架被应用于研究从侧脑任务期间脑电图数据的认知控制。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号