首页> 外文期刊>Neurocomputing >Fast online low-rank tensor subspace tracking by CP decomposition using recursive least squares from incomplete observations
【24h】

Fast online low-rank tensor subspace tracking by CP decomposition using recursive least squares from incomplete observations

机译:CP分解使用来自不完整观测的递归最小二乘法的CP分解的快速在线低级张力子空间跟踪

获取原文
获取原文并翻译 | 示例

摘要

This paper considers the problem of online tensor subspace tracking of a partially observed high-dimensional data stream corrupted by noise, where we assume that the data lie in a low-dimensional linear subspace. This problem is cast as an online low-rank tensor completion problem. We propose a novel online tensor subspace tracking algorithm based on the CANDECOMP/PARAFAC (CP) decomposition, dubbed OnLine Low-rank Subspace tracking by TEnsor CP Decomposition (OLSTEC). The proposed algorithm specifically addresses the case in which data of interest are fed into the algorithm over time infinitely, and their subspace are dynamically time-varying. To this end, we build up our proposed algorithm exploiting the recursive least squares (RLS), which is a second-order gradient algorithm. Numerical evaluations on synthetic datasets and real-world datasets such as communication network traffic, environmental data, and surveillance videos, show that the proposed OLSTEC algorithm outperforms state-of-the-art online algorithms in terms of the convergence rate per iteration. (C) 2018 Elsevier B.V. All rights reserved.
机译:本文考虑了通过噪声损坏的部分观察到的高维数据流的在线张力子空间跟踪问题,在那里我们假设数据在低维线性子空间中。这个问题是作为在线低级张量完成问题的。我们提出了一种基于CANDECOMP / PARAFAC(CP)分解的新型在线张量子空间跟踪算法,通过TENSOR CP分解(OLSTEC)被称为在线低级子空间跟踪。所提出的算法具体地解决了感兴趣数据的情况,其中无限地将感兴趣的数据馈送到算法中,并且它们的子空间是动态的时变的。为此,我们建立了利用递归最小二乘(RLS)的所提出的算法,这是二阶梯度算法。合成数据集和现实世界数据集的数值评估,如通信网络流量,环境数据和监视视频,表明所提出的OLSTEC算法在每个迭代的收敛速率方面优于最先进的在线算法。 (c)2018年elestvier b.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号