首页> 外文期刊>Signal, Image and Video Processing >Computer-aided diagnosis system for tissue characterization of brain tumor on magnetic resonance images - Springer
【24h】

Computer-aided diagnosis system for tissue characterization of brain tumor on magnetic resonance images - Springer

机译:用于在磁共振图像上表征脑肿瘤的计算机辅助诊断系统-Springer

获取原文
获取原文并翻译 | 示例

摘要

The manual analysis of brain tumor on magnetic resonance (MR) images is time-consuming and subjective. Thus, to avoid human errors in brain tumor diagnosis, this paper presents an automatic and accurate computer-aided diagnosis (CAD) system based on ensemble classifier for the characterization of brain tumors on MR images as benign or malignant. Brain tumor tissue was automatically extracted from MR images by the proposed segmentation technique. A tumor is represented by extracting its texture, shape, and boundary features. The most significant features are selected by using information gain-based feature ranking and independent component analysis techniques. Next, these features are used to train the ensemble classifier consisting of support vector machine, artificial neural network, and (k)-nearest neighbor classifiers to characterize the tumor. Experiments were carried out on a dataset consisting of T1-weighted post-contrast and T2-weighted MR images of 550 patients. The developed CAD system was tested using the leave-one-out method. The experimental results showed that the proposed segmentation technique achieves good agreement with the gold standard and the ensemble classifier is highly effective in the diagnosis of brain tumor with an accuracy of 99.09 % (sensitivity 100 % and specificity 98.21 %). Thus, the proposed system can assist radiologists in an accurate diagnosis of brain tumors.
机译:在磁共振(MR)图像上手动分析脑肿瘤既费时又主观。因此,为了避免人脑肿瘤诊断中的错误,本文提出了一种基于集成分类器的自动,准确的计算机辅助诊断(CAD)系统,用于将MR图像上的脑肿瘤特征化为良性或恶性。通过提出的分割技术自动从MR图像中提取脑肿瘤组织。通过提取其纹理,形状和边界特征来代表肿瘤。通过使用基于信息增益的特征排名和独立的组件分析技术,可以选择最重要的特征。接下来,这些特征用于训练由支持向量机,人工神经网络和(k)最近邻分类器组成的整体分类器,以表征肿瘤。在由550位患者的T1加权对比后图像和T2加权MR图像组成的数据集上进行了实验。使用留一法对开发的CAD系统进行了测试。实验结果表明,提出的分割技术与金标准达到了很好的一致性,并且集成分类器在诊断脑肿瘤方面非常有效,准确度为99.09%(灵敏度为100%,特异性为98.21%)。因此,提出的系统可以帮助放射科医生准确诊断脑肿瘤。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号