首页> 外文期刊>Services Computing, IEEE Transactions on >Collaborative Web Service QoS Prediction via Neighborhood Integrated Matrix Factorization
【24h】

Collaborative Web Service QoS Prediction via Neighborhood Integrated Matrix Factorization

机译:通过邻域集成矩阵分解的协作Web服务QoS预测

获取原文
获取原文并翻译 | 示例

摘要

With the increasing presence and adoption of web services on the World Wide Web, the demand of efficient web service quality evaluation approaches is becoming unprecedentedly strong. To avoid the expensive and time-consuming web service invocations, this paper proposes a collaborative quality-of-service (QoS) prediction approach for web services by taking advantages of the past web service usage experiences of service users. We first apply the concept of user-collaboration for the web service QoS information sharing. Then, based on the collected QoS data, a neighborhood-integrated approach is designed for personalized web service QoS value prediction. To validate our approach, large-scale real-world experiments are conducted, which include 1,974,675 web service invocations from 339 service users on 5,825 real-world web services. The comprehensive experimental studies show that our proposed approach achieves higher prediction accuracy than other approaches. The public release of our web service QoS data set provides valuable real-world data for future research.
机译:随着万维网上Web服务的出现和采用的增加,对高效Web服务质量评估方法的需求变得空前强烈。为避免昂贵且费时的Web服务调用,本文提出了一种利用Web服务用户过去的Web Service使用经验的协作式服务质量(QoS)预测方法。我们首先将用户协作的概念应用于Web服务QoS信息共享。然后,基于收集到的QoS数据,设计了一种邻域集成方法来进行个性化Web服务QoS值预测。为了验证我们的方法,我们进行了大规模的真实世界实验,其中包括来自339个服务用户的5,825个真实世界Web服务上的1,974,675个Web服务调用。全面的实验研究表明,我们提出的方法比其他方法具有更高的预测精度。我们的Web服务QoS数据集的公开发布为将来的研究提供了宝贵的实际数据。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号