首页> 外文期刊>IEEE transactions on network and service management >NDMF: Neighborhood-Integrated Deep Matrix Factorization for Service QoS Prediction
【24h】

NDMF: Neighborhood-Integrated Deep Matrix Factorization for Service QoS Prediction

机译:NDMF:服务QoS预测的邻域集成​​的深矩阵分解

获取原文
获取原文并翻译 | 示例

摘要

Quality of service (QoS) has been mostly applied to represent non-functional properties of Web services and differentiate those with the same functionality. How to accurately predict service QoS has become a key research topic. Researchers have employed neighborhood information into matrix factorization (MF) for service QoS prediction in recent years. However, they are restricted to traditional matrix factorization that may incur a couple of limitations. 1) Conventional MF for QoS prediction linearly combines the multiplication of the latent feature representation of users and services through inner product, failing to fully capture the implicit features of user and service. 2) Most of approaches integrate user or service neighborhood as heuristics into MF model, where either location context or historical invocation records are used to calculate similar users or services. Nevertheless, combining both of them together in a collaborative way is ignored for neighborhood selection that has yet to be properly explored. To deal with the challenges, we propose a novel approach for service QoS prediction called Neighborhoodintegrated Deep Matrix Factorization (NDMF), which integrates user neighborhood selected by a collaborative way into an enhanced matrix factorization model via deep neural network (DNN). We implement a prototype system and conduct extensive experiments on public and real-world large Web service dataset with almost 2,000,000 service invocations called WS-DREAM which is widely used in service QoS prediction. The experimental results demonstrate that our proposed approach significantly outperforms state-of-the-art ones in terms of multiple evaluation metrics.
机译:服务质量(QoS)主要用于代表Web服务的非功能性属性,并将这些功能与功能相同。如何准确预测服务QoS已成为一个关键的研究主题。研究人员近年来将邻里信息纳入矩阵分组(MF),以便在近年来服务QoS预测。然而,它们仅限于传统的矩阵分解,这可能会产生几个限制。 1)QoS预测的传统MF线性地组合了通过内部产品的用户和服务的潜在特征表示的乘法,不能完全捕获用户和服务的隐式特征。 2)大多数方法将用户或服务社区集成为启发式MF模型,其中定位上下文或历史调用记录用于计算类似的用户或服务。尽管如此,对于尚未得到适当探索的邻域选择,将它们两者组合在一起以合作方式组合在一起。为了应对挑战,我们提出了一种新的服务QoS预测方法,称为邻域集成的深矩阵分解(NDMF),其通过深神经网络(DNN)将通过协同方式选择的用户邻域集成到增强矩阵分子分子模型中。我们实施了原型系统,并在公共和现实世界大型Web服务数据集进行了广泛的实验,近2,000,000名称的服务调用,称为WS-Dream,其广泛用于服务QoS预测。实验结果表明,在多种评估指标方面,我们所提出的方法显着优于最先进的方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号