首页> 外文期刊>Engineering Applications of Artificial Intelligence >Efficient web service QoS prediction using local neighborhood matrix factorization
【24h】

Efficient web service QoS prediction using local neighborhood matrix factorization

机译:使用局部邻域矩阵分解的高效Web服务QoS预测

获取原文
获取原文并翻译 | 示例

摘要

In the era of Big Data, companies worldwide are actively deploying web services in both intranet and internet environments. Quality-of-Service (QoS), the fundamental aspect of web service has thus attracted numerous attention in industry and academia. The study on sufficient QoS data keeps advancing the state in Service-Oriented Computing (SOC) area. To collect a large amount of resource in practice, QoS prediction applicatipns are designed and built. Nevertheless, how to generate accurate results in high productivity is still a main challenge to existing frameworks. In this paper, we propose LoNMF, a Local Neighborhood Matrix Factorization application that incorporates domain knowledge in modern Artificial Intelligence (AI) technique to tackle this challenge. LoNMF first proposes a two-level selection mechanism that can identify a set of highly relevant local neighbors for target user. And then, it integrates the gepgraphical information to build up an extended Matrix Factorization (MF) approach for personalized QoS prediction. Finally, it iteratively generates results by utilizing hints from previous round computations, a gradient boosting strategy that directly accelerates solving process. Experimental evidence on large-scale real-world QoS data shows that LoNMF is scalable, and consistently outperforming other state-of-the-art applications in prediction accuracy and efficiency.
机译:在大数据时代,全球公司都在Intranet和Internet环境中积极部署Web服务。服务质量(QoS)是Web服务的基本方面,因此引起了行业和学术界的广泛关注。对足够的QoS数据的研究不断推动着面向服务计算(SOC)领域的发展。为了在实践中收集大量资源,设计并构建了QoS预测应用程序。然而,如何以高生产率产生准确的结果仍然是现有框架的主要挑战。在本文中,我们提出LoNMF,这是一种将本地知识结合到现代人工智能(AI)技术中的本地邻域矩阵分解应用程序,以应对这一挑战。 LoNMF首先提出一种两级选择机制,该机制可以为目标用户标识一组高度相关的本地邻居。然后,它集成了图形信息,以建立用于个性化QoS预测的扩展矩阵分解(MF)方法。最后,通过利用前一轮计算的提示来迭代生成结果,这是一种直接加速求解过程的梯度提升策略。关于大规模实际QoS数据的实验证据表明,LoNMF具有可扩展性,并且在预测准确性和效率方面始终优于其他最新应用程序。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号