首页> 外文期刊>Knowledge-Based Systems >Your neighbors alleviate cold-start: On geographical neighborhood influence to collaborative web service QoS prediction
【24h】

Your neighbors alleviate cold-start: On geographical neighborhood influence to collaborative web service QoS prediction

机译:您的邻居减轻了冷启动:在地理邻域中对协作Web服务QoS预测的影响

获取原文
获取原文并翻译 | 示例

摘要

Predicting the unknown quality of service(QoS) for an active user who has not previously accessed a Web service plays a fundamental role in supporting appropriate service selection, high quality service composition and reliable distributed system construction. Existing Web service QoS prediction methods suffer from the problems of data sparsity and cold-start, which dramatically degrade prediction accuracy and even impede their applicability in real scenarios. Additionally, the potentially positive but inconspicuous relation between geographical region and QoS rating interaction among users and Web services has been underestimated in previous studies. In contrast to those studies, we propose a collaborative Web service QoS prediction approach that incorporates the knowledge of geographical neighborhoods. By analyzing the geographical relationships in the real-world dataset WSDream, we observe that users and Web services are positively correlated with their geographical neighbors. Based on this observation, we first design a bottom up neighborhood clustering method for correlating geographical neighbor selection. Then, we construct two diversified similarity neighborhood regularization terms and systemically integrate them into a matrix factorization model, which achieves the knowledge transfer of geographical neighborhoods in improving QoS prediction accuracy. Experimental results have demonstrated that our approach performs more efficiently than existing methods with respect to accuracy, as well as alleviating the data sparsity and cold-start issues. (C) 2017 Elsevier B.V. All rights reserved.
机译:预测先前未访问过Web服务的活动用户的未知服务质量(QoS)在支持适当的服务选择,高质量的服务组合和可靠的分布式系统构建方面起着基本作用。现有的Web服务QoS预测方法存在数据稀疏和冷启动的问题,这大大降低了预测的准确性,甚至阻碍了它们在实际场景中的适用性。此外,以前的研究还低估了地理区域与用户和Web服务之间的QoS等级交互之间潜在的积极但不显眼的关系。与这些研究相比,我们提出了一种协作Web服务QoS预测方法,该方法结合了地理邻域知识。通过分析现实世界数据集WSDream中的地理关系,我们观察到用户和Web服务与其地理邻居正相关。基于此观察,我们首先设计了一种自下而上的邻域聚类方法,用于关联地理邻居选择。然后,我们构造了两个不同的相似度邻域正则化项,并将它们系统地集成到矩阵分解模型中,从而实现了地理邻域的知识转移,从而提高了QoS预测的准确性。实验结果表明,在准确性以及减轻数据稀疏性和冷启动问题方面,我们的方法比现有方法更有效。 (C)2017 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号