首页> 外文期刊>Services Computing, IEEE Transactions on >Topic-Based Influence Computation in Social Networks Under Resource Constraints
【24h】

Topic-Based Influence Computation in Social Networks Under Resource Constraints

机译:资源约束下基于主题的社交网络影响力计算

获取原文
获取原文并翻译 | 示例

摘要

As social networks are constantly changing and evolving, methods to analyze dynamic social networks are becoming more important in understanding social trends. However, due to the restrictions imposed by the social network service providers, the resources available to fetch the entire contents of a social network are typically very limited. As a result, analysis of dynamic social network data requires maintaining an approximate copy of the social network for each time period, locally. In this paper, we study the problem of dynamic network and text fetching with limited probing capacities, for identifying and maintaining influential users as the social network evolves. We propose an algorithm to probe the relationships (required for global influence computation) as well as posts (required for topic-based influence computation) of a limited number of users during each probing period, based on the influence trends and activities of the users. We infer the current network based on the newly probed user data and the last known version of the network maintained locally. Additionally, we propose to use link prediction methods to further increase the accuracy of our network inference. We employ PageRank as the metric for influence computation. We illustrate how the proposed solution maintains accurate PageRank scores for computing global influence, and topic-sensitive weighted PageRank scores for topic-based influence. The latter relies on a topic-based network constructed via weights determined by semantic analysis of posts and their sharing statistics. We evaluate the effectiveness of our algorithms by comparing them with the true influence scores of the full and up-to-date version of the network, using data from the micro-blogging service Twitter. Results show that our techniques significantly outperform baseline methods (80 percent higher accuracy for network fetching and 77 percent for text fetching) and are superior to state-of-the-art techniques from the literature (21 percent higher accuracy).
机译:随着社交网络的不断变化和发展,分析动态社交网络的方法在理解社交趋势方面变得越来越重要。但是,由于社交网络服务提供商施加的限制,可用于获取社交网络的整个内容的资源通常非常有限。结果,对动态社交网络数据的分析需要在每个时间段本地维护社交网络的近似副本。在本文中,我们研究了具有有限探测能力的动态网络和文本获取问题,以便随着社交网络的发展来识别和维护有影响力的用户。我们提出了一种算法,根据用户的影响趋势和活动,在每个探测期间探查其数量(有限的用户)的关系(对于全局影响力计算是必需的)以及帖子(对于基于主题的影响力计算是必需的)。我们根据新探测的用户数据和本地维护的网络的最新已知版本推断当前网络。另外,我们建议使用链接预测方法来进一步提高我们网络推理的准确性。我们采用PageRank作为影响力计算的指标。我们说明了所提出的解决方案如何维护用于计算全局影响力的准确PageRank分数,以及用于基于主题的影响力的主题敏感加权PageRank分数。后者依赖于基于主题的网络,该网络是通过对帖子及其共享统计信息进行语义分析确定的权重构建的。我们使用微博客服务Twitter的数据,通过将其与网络完整版本和最新版本的真实影响力得分进行比较,来评估算法的有效性。结果表明,我们的技术明显优于基线方法(网络获取的准确性高80%,文本获取的准确性高77%),并且优于文献中的最新技术(准确性高21%)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号