首页> 外文期刊>IEEE sensors journal >An INS and UWB Fusion Approach With Adaptive Ranging Error Mitigation for Pedestrian Tracking
【24h】

An INS and UWB Fusion Approach With Adaptive Ranging Error Mitigation for Pedestrian Tracking

机译:行人跟踪自适应测距时的INS和UWB融合方法

获取原文
获取原文并翻译 | 示例

摘要

Fusion techniques are employed in pedestrian tracking to achieve more accurate and robust tracking systems. A common approach is to fuse Inertial Navigation System (INS), worn by a pedestrian, with a radio-based system to complement each other and mitigate their shortcomings. Despite the increased accuracy achieved in the state-of-the-art approaches, the deployment complexity and cost of these tracking systems remain a major bottleneck. In this paper, a novel INS and Ultra-wideband (UWB) fusion approach, which complements INS only with ranging measurements obtained from UWB anchors placed at known location, is proposed. An adaptive UWB ranging uncertainty model is proposed and incorporated in a Particle Filter fusion algorithm, which reduces errors of the UWB measurements and enhances positioning accuracy. The proposed approach achieves significant reduction of the deployment complexity and cost compared to other approaches that have comparable tracking performance. The pedestrian tracking system is implemented using the built-in inertial measurement unit of a smartphone and DecaWave TREK1000 UWB development kit. Two practical long-distance pedestrian tracking experiments are conducted to demonstrate the accuracy and robustness of the proposed approach, which reduces mean position error up to 73.23 % when compared to INS only tracking results.
机译:融合技术在行人跟踪中采用,以实现更准确和鲁棒的跟踪系统。一种常见的方法是熔化由行人佩戴的惯性导航系统(INS),利用基于无线电的系统互相补充并减少其缺点。尽管在最先进的方法中实现了提高的准确性,但这些跟踪系统的部署复杂性和成本仍然是一个主要的瓶颈。在本文中,提出了一种新的INS和超宽带(UWB)融合方法,其仅符合从放置在已知位置处的UWB锚定的测量值。提出了一种自适应UWB测距不确定性模型,并结合在粒子滤波器融合算法中,这减少了UWB测量的误差并提高了定位精度。与具有可比性跟踪性能的其他方法相比,该拟议的方法实现了部署复杂性和成本的显着降低。步行跟踪系统使用智能手机和Decawave Trek1000 UWB开发套件的内置惯性测量单元实现。进行了两种实际的长途步行跟踪实验,以展示所提出的方法的准确性和稳健性,与仅跟踪结果相比,该方法的准确性和稳健性降低了高达73.23%的平均位置误差。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号