首页> 外文期刊>Sensors Journal, IEEE >Intelligent Driving Data Recorder in Smartphone Using Deep Neural Network-Based Speedometer and Scene Understanding
【24h】

Intelligent Driving Data Recorder in Smartphone Using Deep Neural Network-Based Speedometer and Scene Understanding

机译:基于深度神经网络的速度计和场景理解的智能手机智能驾驶数据记录仪

获取原文
获取原文并翻译 | 示例

摘要

This paper proposes a smartphone-based Driving Data Recorder (DDR). The proposed DDR has the functions of accurate speed estimation and intelligent traffic scene understanding. DDRs are used to store the relevant driving data to provide feedback on driver behavior for accident analysis, insurance issue, and so on. The conventional DDRs are standalone devices with multiple sensors. The current DDR products record many useless data or lose important information. On the other hand, the widely used smartphones already have the hardware conditions to replace the conventional DDR products. This paper proposes to develop the intelligent DDR in the smartphones. Considering the requirements of the DDRs, two functions are developed in this paper: motion sensor-based speedometer and vision sensor-based scene understanding. The proposed speedometer function adopts double-layered Long Short-Term Memory (LSTM) network as the model, which can estimate the vehicle speed directly from gyroscope and accelerometer of a smartphone. The scene understanding function can detect road facilities such as traffic lights, crosswalks, and stop lines. The driving data recorded in those areas are very important for analyzing driver behaviors. In the development of the scene understanding function, maintaining high detection accuracy with reduced computation cost is significant due to the limitation of smartphones’ processing resources. This paper uses a lightweight architecture deep learning network to achieve the goal. The proposed system has been evaluated using the real traffic data. Speed estimation function only has 1.8 km/h of speed mean error. In addition, there is no accumulated error even for a long time driving. The evaluation of the scene understanding function indicates that the proposed method can provide a high-accuracy detection at 2 FPS, which is faster than the state-of-the-art method.
机译:本文提出了一种基于智能手机的行车记录仪(DDR)。所提出的DDR具有准确的速度估计和智能交通场景理解的功能。 DDR用于存储相关的驾驶数据,以提供有关驾驶员行为的反馈,以进行事故分析,保险问题等。常规DDR是带有多个传感器的独立设备。当前的DDR产品记录许多无用的数据或丢失重要信息。另一方面,广泛使用的智能手机已经具备了替代传统DDR产品的硬件条件。本文提出在智能手机中开发智能DDR。考虑到DDR的要求,本文开发了两个功能:基于运动传感器的速度计和基于视觉传感器的场景理解。拟议的车速表功能采用双层长期短期记忆(LSTM)网络作为模型,可以直接从智能手机的陀螺仪和加速度计估算车速。场景理解功能可以检测交通信号灯,人行横道和停车线等道路设施。这些区域中记录的驾驶数据对于分析驾驶员行为非常重要。在场景理解功能的开发中,由于智能手机的处理资源有限,维持高检测精度和降低计算成本非常重要。本文使用轻量级架构深度学习网络来实现这一目标。所建议的系统已使用实际交通数据进行了评估。速度估算功能只有1.8 km / h的速度平均误差。另外,即使长时间行驶也不会有累积误差。对场景理解功能的评估表明,所提出的方法可以在2 FPS时提供高精度检测,这比最新方法要快。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号