首页> 外文期刊>Sensors Journal, IEEE >TrueStory: Accurate and Robust RF-Based Floor Estimation for Challenging Indoor Environments
【24h】

TrueStory: Accurate and Robust RF-Based Floor Estimation for Challenging Indoor Environments

机译:TrueStory:针对具有挑战性的室内环境,基于射频的准确,稳健的地板估计

获取原文
获取原文并翻译 | 示例

摘要

WiFi-based indoor localization systems are popular due to the WiFi ubiquity and availability in commodity smartphone devices for network communication. The majority of these systems focus on finding the user's 2-D location in a single floor. However, this is of little value when the altitude of the user is unknown in any typical multi-story building. In this paper, we propose TrueStory: a system that can accurately and robustly identify the user's floor level using the building's WiFi networks. TrueStory targets challenging environments where the access point (AP) density is not uniform and/or there are open areas that make the APs heard strongly in faraway floors. To handle these challenges, TrueStory employs a number of techniques including signal normalization, AP power equalization, and fusing various learners using a multilayer perceptron neural network. We present the design and implementation of TrueStory and evaluate its performance in three different testbeds. Our evaluation shows that TrueStory can accurately identify the user's exact floor level up to 91.8% of the time and within one floor error 99% of the time. This improves the floor estimation accuracy over the state-of-the-art systems and reduces the high floor errors by more than 23%. In addition, we show that it has a robust performance for various challenging environments.
机译:基于WiFi的室内定位系统之所以受欢迎,是因为WiFi普遍存在,并且在商用智能手机设备中可用于网络通信。这些系统大多数集中于在单个楼层中查找用户的二维位置。然而,当在任何典型的多层建筑物中用户的高度未知时,这没有什么价值。在本文中,我们提出了TrueStory:一种可以使用建筑物的WiFi网络准确而可靠地识别用户楼层的系统。 TrueStory面向的挑战性环境是接入点(AP)密度不均匀和/或存在开放区域,这些区域使AP在遥远的楼层都能听到强烈的声音。为了应对这些挑战,TrueStory采用了多种技术,包括信号归一化,AP功率均衡以及使用多层感知器神经网络融合各种学习器。我们介绍TrueStory的设计和实现,并在三个不同的测试平台上评估其性能。我们的评估表明,TrueStory最多可以在91.8%的时间内准确识别用户的确切楼层水平,并且在99%的时间内出现一个楼层错误。与现有技术相比,这提高了楼层估计的准确性,并将较高的楼层误差降低了23%以上。此外,我们证明了它在各种挑战性环境中均具有强大的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号