首页> 外文期刊>IEEE sensors journal >Soft Fault Diagnosis and Recovery Method Based on Model Identification in Rotation FOG Inertial Navigation System
【24h】

Soft Fault Diagnosis and Recovery Method Based on Model Identification in Rotation FOG Inertial Navigation System

机译:基于模型识别的旋转FOG惯性导航系统软故障诊断与恢复方法

获取原文
获取原文并翻译 | 示例

摘要

Inertial navigation system (INS) is a critical and essential equipment for vehicles, ships, and aircrafts. However, as the soft fault parameters of the INS vary with time, internal device operations and external environmental disturbances, periodic diagnosis and recovery of the soft faults are required to satisfy their accuracy requirements. The deployment of human experts for fault diagnosis and recovery in INS would mean low efficiency and heavy workload, as well as low-speed operations. In this paper, a method for automatic diagnosis and recovery of the soft faults, based on the rotation INS (RINS) error model is proposed. This method is implemented by means of a self-rotation mechanism, driven by a specially designated rotation strategy. On the basis of the attitude and change rate of velocity errors in stationary base navigation, a least squares algorithm is used for optimal soft fault parameter identification. Experimental results from a real dual-axis RINS demonstrate the effectiveness of the method in automatically, accurately, and quickly diagnosing and recovering soft faults, and further improving the accuracy of INS, after recovery.
机译:惯性导航系统(INS)是车辆,轮船和飞机的关键和必不可少的设备。但是,由于INS的软故障参数会随时间,内部设备操作和外部环境干扰而变化,因此需要定期诊断和恢复软故障以满足其精度要求。在INS中部署人员专家进行故障诊断和恢复将意味着效率低,工作量大以及操作速度低。提出了一种基于旋转惯量(RINS)误差模型的软故障自动诊断与恢复方法。该方法是通过自动旋转机制来实现的,该机制由专门指定的旋转策略驱动。基于固定基础导航中速度误差的态势和变化率,采用最小二乘算法进行软故障参数的最优识别。实际双轴RINS的实验结果证明了该方法在自动,准确,快速地诊断和恢复软故障中的有效性,并在恢复后进一步提高了INS的准确性。

著录项

  • 来源
    《IEEE sensors journal》 |2017年第17期|5705-5716|共12页
  • 作者单位

    Department School of Instrumentation Science and Opto-Electronics Engineering, Beihang University, Beijing, China;

    Department School of Instrumentation Science and Opto-Electronics Engineering, Beihang University, Beijing, China;

    Department School of Instrumentation Science and Opto-Electronics Engineering, Beihang University, Beijing, China;

    Department School of Instrumentation Science and Opto-Electronics Engineering, Beihang University, Beijing, China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Fault diagnosis; Accelerometers; Azimuth; Sensors; Inertial navigation; Parameter estimation;

    机译:故障诊断;加速度计;方位角;传感器;惯性导航;参数估计;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号