首页> 外文期刊>IEEE transactions on industrial informatics >Correlation-Averaging Methods and Kalman Filter Based Parameter Identification for a Rotational Inertial Navigation System
【24h】

Correlation-Averaging Methods and Kalman Filter Based Parameter Identification for a Rotational Inertial Navigation System

机译:旋转惯性导航系统的相关平均法和基于卡尔曼滤波的参数辨识

获取原文
获取原文并翻译 | 示例

摘要

The attitude accuracy of the existing rotational inertial navigation system (RINS) is affected by oscillatory attitude errors caused by the installation errors of rotation axes or inertial sensors. Additional equipment is required to estimate installation errors under dynamic conditions. Methods that use the output of a single RINS to estimate installation errors under dynamic conditions are currently lacking. To address this challenge, this study proposes an installation error estimation method that combines a correlation method, an averaging method, and the Kalman filter. The proposed method adopts a correlation method to increase the signal-to-noise ratio, an averaging method to block certain sine signals, and the Kalman filter to identify installation errors in real time. Simulation, turntable, and sea tests were conducted to verify the proposed algorithm. Results show that the estimation accuracy of installation errors is at 10 arcsec levels, which indicates that said errors are estimated accurately using the RINS output initially obtained under dynamic conditions.
机译:现有旋转惯性导航系统(RINS)的姿态精度受旋转轴或惯性传感器安装误差引起的振荡姿态误差的影响。需要额外的设备来估计动态条件下的安装错误。当前缺乏使用单个RINS的输出来估计动态条件下安装错误的方法。为了应对这一挑战,本研究提出了一种将相关方法,平均方法和卡尔曼滤波器相结合的安装误差估计方法。所提出的方法采用相关方法来增加信噪比,采用平均方法来阻止某些正弦信号,并使用卡尔曼滤波器来实时识别安装错误。仿真,转台和海试进行了验证该算法。结果表明,安装错误的估计精度为10 arcsec级别,这表明使用动态条件下最初获得的RINS输出可以准确地估计所述错误。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号