首页> 外文期刊>Selected Topics in Signal Processing, IEEE Journal of >Models for Static and Dynamic Texture Synthesis in Image and Video Compression
【24h】

Models for Static and Dynamic Texture Synthesis in Image and Video Compression

机译:图像和视频压缩中静态和动态纹理合成的模型

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we investigate the use of linear, parametric models of static and dynamic texture in the context of conventional transform coding of images and video. We propose a hybrid approach incorporating both conventional transform coding and texture-specific methods for improvement of coding efficiency. Regarding static (i.e., purely spatial) texture, we show that Gaussian Markov random fields (GMRFs) can be used for analysis/synthesis of a certain class of texture. The properties of this model allow us to derive optimal methods for classification, analysis, quantization and synthesis. For video containing dynamic textures, a linear dynamic model can be derived from frames encoded in a conventional fashion. We show that after removing effects from camera motion, this model can be used to synthesize further frames. Beyond that, we show that using synthesized frames in an appropriate fashion for prediction leads to significant bitrate savings while preserving the same peak signal-to-noise ratio (PSNR) for sequences containing dynamic textures.
机译:在本文中,我们研究了在图像和视频的常规变换编码的情况下,静态和动态纹理的线性,参数模型的使用。我们提出了一种混合方法,将传统的转换编码和纹理特定方法结合在一起,以提高编码效率。关于静态(即纯空间)纹理,我们表明高斯马尔可夫随机场(GMRF)可以用于特定类别纹理的分析/合成。该模型的特性使我们能够得出用于分类,分析,量化和综合的最佳方法。对于包含动态纹理的视频,可以从以常规方式编码的帧中得出线性动态模型。我们显示,从相机运动中移除效果后,该模型可用于合成其他帧。除此之外,我们表明以适当的方式使用合成帧进行预测可节省大量比特率,同时对于包含动态纹理的序列保留相同的峰值信噪比(PSNR)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号