首页> 外文期刊>Selected Topics in Signal Processing, IEEE Journal of >Building Adaptive Dialogue Systems Via Bayes-Adaptive POMDPs
【24h】

Building Adaptive Dialogue Systems Via Bayes-Adaptive POMDPs

机译:通过贝叶斯自适应POMDP构建自适应对话系统

获取原文
获取原文并翻译 | 示例

摘要

Recent research has shown that effective dialogue management can be achieved through the Partially Observable Markov Decision Process (POMDP) framework. However past research on POMDP-based dialogue systems usually assumed the parameters of the decision process were known a priori. The main contribution of this paper is to present a Bayesian reinforcement learning framework for learning the POMDP parameters online from data, in a decision-theoretic manner. We discuss various approximations and assumptions which can be leveraged to ensure computational tractability, and apply these techniques to learning observation models for several simulated spoken dialogue domains.
机译:最近的研究表明,可以通过部分可观察的马尔可夫决策过程(POMDP)框架来实现有效的对话管理。但是,过去基于POMDP的对话系统的研究通常假定先验决策过程的参数。本文的主要贡献是提出一种贝叶斯强化学习框架,以决策理论的方式从数据在线学习POMDP参数。我们讨论了各种近似值和假设,可以利用这些近似值和假设来确保计算的可处理性,并将这些技术应用于几种模拟口语对话域的学习观察模型。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号