首页> 外文期刊>Selected Topics in Signal Processing, IEEE Journal of >Classification of Remote Sensing Optical and LiDAR Data Using Extended Attribute Profiles
【24h】

Classification of Remote Sensing Optical and LiDAR Data Using Extended Attribute Profiles

机译:使用扩展属性配置文件对遥感光学和LiDAR数据进行分类

获取原文
获取原文并翻译 | 示例

摘要

Extended Attribute Profiles (EAPs), which are obtained by applying morphological attribute filters to an image in a multilevel architecture, can be used for the characterization of the spatial characteristics of objects in a scene. EAPs have proved to be discriminant features when considered for thematic classification in remote sensing applications especially when dealing with very high resolution images. Altimeter data (such as LiDAR) can provide important information, which being complementary to the spectral one can be valuable for a better characterization of the surveyed scene. In this paper, we propose a technique performing a classification of the features extracted with EAPs computed on both optical and LiDAR images, leading to a fusion of the spectral, spatial and elevation data. The experiments were carried out on LiDAR data along either with a hyperspectral and a multispectral image acquired on a rural and urban area of the city of Trento (Italy), respectively. The classification accuracies obtained pointed out the effectiveness of the features extracted by EAPs on both optical and LiDAR data for classification.
机译:通过将形态属性过滤器应用于多层体系结构中的图像而获得的扩展属性配置文件(EAP)可用于表征场景中对象的空间特征。在考虑将EAP用于遥感应用程序中的主题分类时,尤其是在处理非常高分辨率的图像时,EAP已被证明是可区分的。高度计数据(例如LiDAR)可以提供重要的信息,这些信息对光谱的补充对于更好地表征被调查的场景可能是有价值的。在本文中,我们提出了一种对通过在光学和LiDAR图像上计算出的EAP提取的特征进行分类的技术,从而实现光谱,空间和海拔数据的融合。实验分别在LiDAR数据以及在特伦托市(意大利)的农村和城市地区获取的高光谱和多光谱图像上进行。获得的分类精度指出了EAP提取的特征在光学和LiDAR数据上进行分类的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号