首页> 外文期刊>Selected Topics in Signal Processing, IEEE Journal of >Robust Maximum Likelihood Acoustic Energy Based Source Localization in Correlated Noisy Sensing Environments
【24h】

Robust Maximum Likelihood Acoustic Energy Based Source Localization in Correlated Noisy Sensing Environments

机译:相关噪声环境中基于稳健最大似然声能的声源定位

获取原文
获取原文并翻译 | 示例

摘要

Acoustic energy based localization with wireless sensor networks is an interesting solution to locate sources and targets. For simplicity, localization formulation based on the maximum likelihood (ML) approach considers that the source and noise samples are uncorrelated and represented by a Gaussian distribution. However, the acoustic background noise can severely affect the accuracy of the location estimation. This paper proposes an accurate error estimate in which the correlation of the received signals at each wireless sensor is represented by a Hurst exponent and modeled by a fractional Gaussian noise (fGn). The experimental results show that the proposed solution is more appropriate for the source localization estimation under real acoustic noises and even for highly non-stationary sources.
机译:无线传感器网络基于声能的定位是定位源和目标的有趣解决方案。为简单起见,基于最大似然(ML)方法的定位公式认为源和噪声样本是不相关的,并由高斯分布表示。但是,声学背景噪声会严重影响位置估计的准确性。本文提出了一种精确的误差估计,其中,每个无线传感器处接收信号的相关性由赫斯特(Hurst)指数表示,并由分数高斯噪声(fGn)建模。实验结果表明,所提出的解决方案更适合于真实声噪声下的源定位估计,甚至适用于非平稳源。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号