首页> 外文期刊>Selected Topics in Signal Processing, IEEE Journal of >Prior-Guided Image Reconstruction for Accelerated Multi-Contrast MRI via Generative Adversarial Networks
【24h】

Prior-Guided Image Reconstruction for Accelerated Multi-Contrast MRI via Generative Adversarial Networks

机译:通过生成对抗网络加速多对比度MRI的先前引导图像重建

获取原文
获取原文并翻译 | 示例

摘要

Multi-contrast MRI acquisitions of an anatomy enrich the magnitude of information available for diagnosis. Yet, excessive scan times associated with additional contrasts may be a limiting factor. Two mainstream frameworks for enhanced scan efficiency are reconstruction of undersampled acquisitions and synthesis of missing acquisitions. Recently, deep learning methods have enabled significant performance improvements in both frameworks. Yet, reconstruction performance decreases towards higher acceleration factors with diminished sampling density at high-spatial-frequencies, whereas synthesis can manifest artefactual sensitivity or insensitivity to image features due to the absence of data samples from the target contrast. In this article, we propose a new approach for synergistic recovery of undersampled multi-contrast acquisitions based on conditional generative adversarial networks. The proposed method mitigates the limitations of pure learning-based reconstruction or synthesis by utilizing three priors: shared high-frequency prior available in the source contrast to preserve high-spatial-frequency details, low-frequency prior available in the undersampled target contrast to prevent feature leakage/loss, and perceptual prior to improve recovery of high-level features. Demonstrations on brain MRI datasets from healthy subjects and patients indicate the superior performance of the proposed method compared to pure reconstruction and synthesis methods. The proposed method can help improve the quality and scan efficiency of multi-contrast MRI exams.
机译:解剖学的多对比MRI采集丰富可用于诊断的信息的大小。然而,与附加对比相关的过度扫描时间可以是限制因素。增强扫描效率的两个主流框架是重建欠采集的收购和缺失收购的合成。最近,深度学习方法在这两个框架中都能够实现显着的性能改进。然而,在高空间频率下,重建性能降低了更高的加速度因子,而在高空间频率下具有减少的采样密度,而综合可以表现出由于从目标对比度没有数据样本而表现出对图像特征的假人敏感性或不敏感性。在本文中,我们提出了一种基于条件生成的对抗网络的强度多对比度采集的协同恢复的新方法。所提出的方法通过利用三个前瞻性来减轻纯学习的重建或合成的局限性:共用高频以前可用的源对比度,以保持高空间频率细节,低频以预采样的目标对比以防止在提高高级功能的恢复之前,具有泄漏/损失,并且感知。来自健康受试者和患者的脑MRI数据集的演示表明,与纯重建和合成方法相比,该方法的优越性。所提出的方法可以帮助提高多对比度MRI考试的质量和扫描效率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号