首页> 外文期刊>Selected Topics in Signal Processing, IEEE Journal of >A Multi-Stream Recurrent Neural Network for Social Role Detection in Multiparty Interactions
【24h】

A Multi-Stream Recurrent Neural Network for Social Role Detection in Multiparty Interactions

机译:多流复发神经网络,用于多党交互中的社会角色检测

获取原文
获取原文并翻译 | 示例

摘要

Understanding multiparty human interaction dynamics is a challenging problem involving multiple data modalities and complex ordered interactions between multiple people. We propose a unified framework that integrates synchronized video, audio, and text streams from four people to capture the interaction dynamics in natural group meetings. We focus on estimating the dynamic social role of the meeting participants, i.e., Protagonist, Neutral, Supporter, or Gatekeeper. Our key innovation is to incorporate both co-occurrence features and successive occurrence features in thin time windows to better describe the behavior of a target participant and his/her responses from others, using a multi-stream recurrent neural network. We evaluate our algorithm on the widely-used AMI corpus and achieve state-of-the-art accuracy of 78% for automatic dynamic social role detection. We further investigate the importance of different video and audio features for estimating social roles.
机译:了解多方的人类交互动态是一个具有挑战性的问题,涉及多个数据模式和多个人之间的复杂订购交互。我们提出了一个统一的框架,它集成了来自四个人的同步视频,音频和文本流,以捕获自然群体会议中的交互动态。我们专注于估计会议参与者的动态社会作用,即主角,中性,支持者或门守。我们的主要创新是使用多流复发神经网络更好地描述薄大时间窗口中的共同发生功能和连续发生功能,以更好地描述目标参与者和他/她的反应的行为。我们在广泛使用的AMI语料库上评估我们的算法,实现最先进的准确性,为78%的自动动态社会角色检测。我们进一步调查了不同视频和音频功能估算社会角色的重要性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号