首页> 外文期刊>Selected Topics in Signal Processing, IEEE Journal of >Successive Convex Approximation Algorithms for Sparse Signal Estimation With Nonconvex Regularizations
【24h】

Successive Convex Approximation Algorithms for Sparse Signal Estimation With Nonconvex Regularizations

机译:具有非凸正则化的稀疏信号估计的连续凸逼近算法

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we propose a successive convex approximation framework for sparse optimization where the nonsmooth regularization function in the objective function is nonconvex and it can be written as the difference of two convex functions. The proposed framework is based on a nontrivial combination of the majorization–minimization framework and the successive convex approximation framework proposed in literature for a convex regularization function. The proposed framework has several attractive features, namely, first, flexibility, as different choices of the approximate function lead to different types of algorithms; second, fast convergence, as the problem structure can be better exploited by a proper choice of the approximate function and the stepsize is calculated by the line search; third, low complexity, as the approximate function is convex and the line search scheme is carried out over a differentiable function; fourth, guaranteed convergence to a stationary point. We demonstrate these features by two example applications in subspace learning, namely the network anomaly detection problem and the sparse subspace clustering problem. Customizing the proposed framework by adopting the best-response type approximation, we obtain soft-thresholding with exact line search algorithms for which all elements of the unknown parameter are updated in parallel according to closed-form expressions. The attractive features of the proposed algorithms are illustrated numerically.
机译:在本文中,我们提出了一个连续凸近似框架用于稀疏优化,其中目标函数中的非光滑正则化函数是非凸的,可以写成两个凸函数的差。所提出的框架基于主要化-最小化框架和文献中针对凸正则化函数提出的连续凸近似框架的非平凡组合。所提出的框架具有几个吸引人的特征,即,第一,灵活性,因为近似函数的不同选择导致不同类型的算法。第二,快速收敛,因为通过适当选择近似函数可以更好地利用问题结构,并且通过线搜索来计算步长。第三,复杂度低,因为近似函数是凸函数,并且对可微函数执行线搜索方案。第四,保证收敛到固定点。我们通过子空间学习中的两个示例应用来演示这些功能,即网络异常检测问题和稀疏子空间聚类问题。通过采用最佳响应类型近似来定制所提出的框架,我们使用精确的线搜索算法获得软阈值,对于该算法,未知参数的所有元素均根据闭式表达式并行更新。通过数字说明了所提出算法的吸引人的特征。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号