首页> 外文期刊>Mechanical systems and signal processing >Compressed sensing with nonconvex sparse regularization and convex analysis for duct mode detection
【24h】

Compressed sensing with nonconvex sparse regularization and convex analysis for duct mode detection

机译:压缩感应与管道模式检测的非透露稀疏正则化和凸分析

获取原文
获取原文并翻译 | 示例

摘要

Recently, research interests are increasing in mode detection methods based on compressed sensing, as it can reduce the number of sensors required by the classical Shannon-Nyquist sampling theory. This paper proposes a nonconvex sparse regularization method for azimuthal mode detection for aero engine fan noise. The nonconvex sparse regularization is based on the generalized minimax-concave (GMC) penalty, which can maintain the convexity of the sparse-regularized least squares cost function, and thus the global optimal solution can be solved by convex optimization algorithms. The main advantage of the GMC method over conventional compressed sensing method in mode detection is that the CMC method can better recover the mode amplitudes with a small number of sensors. Besides, the GMC method can suppress effectively the irrelated modes induced by the background noise or sensor installation errors. Therefore, the proposed method for duct mode detection can significantly improve the accuracy of the detected modes. Numerical simulations and experimental tests verify the effectiveness of the GMC method in mode detection for aero engine fan noise, and comparison studies show that the GMC method provides more accurate mode detection results than l_1 minimization in the category of compressed sensing, as well as traditional mode detection methods.
机译:最近,基于压缩感测的模式检测方法正在增加研究兴趣,因为它可以减少经典Shannon-Nyquist采样理论所需的传感器数量。本文提出了一种非渗透稀疏正则化方法,用于航空发动机风扇噪声的方位角模式检测。非耦合稀疏正则化是基于广义最小凹(GMC)惩罚,其可以维持稀疏规则化最小二乘函数的凸性,因此可以通过凸优化算法来解决全局最优解决方案。 GMC方法在模式检测中通过传统压缩检测方法的主要优点是CMC方法可以更好地恢复具有少量传感器的模式幅度。此外,GMC方法可以有效地抑制由背景噪声或传感器安装误差引起的触发模式。因此,用于管道模式检测的所提出的方法可以显着提高检测模式的准确性。数值模拟和实验测试验证了GMC方法在Aero发动机风扇噪声的模式检测中的有效性,并且比较研究表明,GMC方法在压缩感测的范畴中提供了比L_1最小化的更精确的模式检测结果,以及传统模式检测方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号