首页> 外文期刊>Scientific programming >A Multiple Classifier Fusion Algorithm Using Weighted Decision Templates
【24h】

A Multiple Classifier Fusion Algorithm Using Weighted Decision Templates

机译:基于加权决策模板的多分类器融合算法

获取原文
获取原文并翻译 | 示例

摘要

Fusing classifiers' decisions can improve the performance of a pattern recognition system. Many applications areas have adopted the methods of multiple classifier fusion to increase the classification accuracy in the recognition process. From fully considering the classifier performance differences and the training sample information, a multiple classifier fusion algorithm using weighted decision templates is proposed in this paper. The algorithm uses a statistical vector to measure the classifier's performance and makes a weighed transform on each classifier according to the reliability of its output. To make a decision, the information in the training samples around an input sample is used by the k-nearest-neighbor rule if the algorithm evaluates the sample as being highly likely to be misclassified. An experimental comparison was performed on 15 data sets from the KDD'99, UCI, and ELENA databases. The experimental results indicate that the algorithm can achieve better classification performance. Next, the algorithm was applied to cataract grading in the cataract ultrasonic phacoemulsification operation. The application result indicates that the proposed algorithm is effective and can meet the practical requirements of the operation.
机译:融合分类器的决策可以提高模式识别系统的性能。许多应用领域已经采用了多分类器融合的方法来提高识别过程中的分类精度。在充分考虑分类器性能差异和训练样本信息的基础上,提出了一种基于加权决策模板的多分类器融合算法。该算法使用统计矢量来衡量分类器的性能,并根据其输出的可靠性对每个分类器进行加权转换。为了做出决定,如果算法将样本评估为极有可能被错误分类,则k最近邻规则将使用输入样本周围的训练样本中的信息。对来自KDD'99,UCI和ELENA数据库的15个数据集进行了实验比较。实验结果表明,该算法具有较好的分类性能。接下来,将该算法应用于白内障超声超声乳化手术中的白内障分级。应用结果表明,该算法是有效的,可以满足实际操作要求。

著录项

  • 来源
    《Scientific programming》 |2016年第2期|3943859.1-3943859.10|共10页
  • 作者

    Mi Aizhong; Wang Lei; Qi Junyan;

  • 作者单位

    Henan Polytech Univ, Sch Comp Sci & Technol, Jiaozuo 454000, Peoples R China;

    Henan Polytech Univ, Sch Comp Sci & Technol, Jiaozuo 454000, Peoples R China;

    Henan Polytech Univ, Sch Comp Sci & Technol, Jiaozuo 454000, Peoples R China;

  • 收录信息 美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号