首页> 外文期刊>Science >Inverse molecular design using machine learning: Generative models for matter engineering
【24h】

Inverse molecular design using machine learning: Generative models for matter engineering

机译:使用机器学习的逆分子设计:物质工程的生成模型

获取原文
获取原文并翻译 | 示例

摘要

The discovery of newmaterials can bring enormous societal and technological progress. In this context, exploring completely the large space of potential materials is computationally intractable. Here, we review methods for achieving inverse design, which aims to discover tailored materials from the starting point of a particular desired functionality. Recent advances from the rapidly growing field of artificial intelligence, mostly from the subfield of machine learning, have resulted in a fertile exchange of ideas, where approaches to inverse molecular design are being proposed and employed at a rapid pace. Among these, deep generativemodels have been applied to numerous classes of materials: rational design of prospective drugs, synthetic routes to organic compounds, and optimization of photovoltaics and redox flow batteries, as well as a variety of other solid-state materials.
机译:新材料的发现可以带来巨大的社会和技术进步。在这种情况下,完全探索潜在材料的巨大空间在计算上是棘手的。在这里,我们回顾了实现逆向设计的方法,该方法旨在从特定所需功能的起点发现量身定制的材料。迅速发展的人工智能领域(主要是机器学习的子领域)的最新进展促成了思想交流,其中提出了逆向分子设计的方法并迅速采用。其中,深层的生成模型已应用于多种材料类别:合理设计预期药物,合成有机化合物的途径,优化光伏电池和氧化还原液流电池以及各种其他固态材料。

著录项

  • 来源
    《Science》 |2018年第6400期|360-365|共6页
  • 作者单位

    Harvard Univ Dept Chem & Chem Biol 12 Oxford St Cambridge MA 02138 USA;

    Univ Toronto Dept Chem Toronto ON M5S 3H6 Canada|Univ Toronto Dept Comp Sci Toronto ON M5S 3H6 Canada|Vector Inst Artificial Intelligence Toronto ON M5S 1M1 Canada|Canadian Inst Adv Res CIFAR Toronto ON M5S 1M1 Canada;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号