首页> 外文期刊>Robotica >A comparative study of in-field motion capture approaches for body kinematics measurement in construction
【24h】

A comparative study of in-field motion capture approaches for body kinematics measurement in construction

机译:施工中体育率测量现场运动捕获方法的比较研究

获取原文
获取原文并翻译 | 示例

摘要

Due to physically demanding tasks in construction, workers are exposed to significant safety and health risks. Measuring and evaluating body kinematics while performing tasks helps to identify the fundamental causes of excessive physical demands, enabling practitioners to implement appropriate interventions to reduce them. Recently, non-invasive or minimally invasive motion capture approaches such as vision-based motion capture systems and angular measurement sensors have emerged, which can be used for in-field kinematics measurements, minimally interfering with on-going work. Given that these approaches have pros and cons for kinematic measurement due to adopted sensors and algorithms, an in-depth understanding of the performance of each approach will support better decisions for their adoption in construction. With this background, the authors evaluate the performance of vision-based (RGB-D sensor-, stereovision camera-, and multiple camera-based) and an angular measurement sensor-based (i.e., an optical encoder) approach to measure body angles through experimental testing. Specifically, measured body angles from these approaches were compared with the ones obtained from a marker-based motion capture system that has less than 0.1 mm of errors. The results showed that vision-based approaches have about 5-10 degrees of error in body angles, while an angular measurement sensor-based approach measured body angles with about 3 degrees of error during diverse tasks. The results indicate that, in general, these approaches can be applicable for diverse ergonomic methods to identify potential safety and health risks, such as rough postural assessment, time and motion study or trajectory analysis where some errors in motion data would not significantly sacrifice their reliability. Combined with relatively accurate angular measurement sensors, vision-based motion capture approaches also have great potential to enable us to perform in-depth physical demand analysis such as biomechanical analysis that requires full-body motion data, even though further improvement of accuracy is necessary. Additionally, understanding of body kinematics of workers would enable ergonomic mechanical design for automated machines and assistive robots that helps to reduce physical demands while supporting workers' capabilities.
机译:由于施工的物理要求苛刻的任务,工人面临着显着的安全和健康风险。在执行任务时测量和评估身体运动学有助于确定过度物理需求的基本原因,使从业者能够实施适当的干预措施来减少它们。最近,已经出现了非侵入性或微创运动捕获方法,例如基于视觉的运动捕获系统和角度测量传感器,其可用于现场运动学测量,最小化干扰正在进行的工作。鉴于这些方法由于采用传感器和算法而具有运动测量的优缺点,对每个方法的性能进行深入了解,将支持更好的决策,以便他们在建设中采用。在此背景下,作者评估了基于视觉的(RGB-D传感器,立体电机和基于多个摄像机)的性能以及基于角度测量传感器的(即,光学编码器)方法来测量身体角度实验测试。具体地,将来自这些方法的测量体角度与从具有小于0.1mm的误差的基于标记的运动捕获系统获得的测量体角。结果表明,基于视觉的方法在身体角度的误差约为5-10度,而基于角度测量传感器的方法在不同任务期间测量了体积大约3次错误。结果表明,一般而言,这些方法可以适用于各种符合人体工程学的方法,以确定潜在的安全和健康风险,例如粗糙的姿势评估,时间和运动研究或轨迹分析,其中运动数据中的一些错误不会显着牺牲其可靠性。结合相对精确的角度测量传感器,基于视觉的运动捕获方法也具有很大的潜力,使我们能够进行深入的物理需求分析,例如需要全身运动数据的生物力学分析,即使是必要的准确性进一步提高。此外,了解工人身体运动学的理解将使人体工程学的机械设计用于自动化机器和辅助机器人,有助于降低支持工人能力的物理需求。

著录项

  • 来源
    《Robotica》 |2019年第5期|928-946|共19页
  • 作者单位

    Hong Kong Polytech Univ Dept Bldg & Real Estate Hong Kong Peoples R China;

    Univ Waterloo Dept Syst Design Engn Waterloo ON Canada;

    Univ Michigan Dept Civil & Environm Engn Ann Arbor MI 48109 USA;

    Univ Waterloo Dept Syst Design Engn Waterloo ON Canada;

    Univ Waterloo Dept Civil & Environm Engn Waterloo ON Canada;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Body kinematics; Motion capture; Construction;

    机译:身体运动学;运动捕获;建筑;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号