首页> 外文期刊>Robotica >A comparative study of in-field motion capture approaches for body kinematics measurement in construction
【24h】

A comparative study of in-field motion capture approaches for body kinematics measurement in construction

机译:现场运动捕捉方法在建筑人体运动学测量中的比较研究

获取原文
获取原文并翻译 | 示例

摘要

Due to physically demanding tasks in construction, workers are exposed to significant safety and health risks. Measuring and evaluating body kinematics while performing tasks helps to identify the fundamental causes of excessive physical demands, enabling practitioners to implement appropriate interventions to reduce them. Recently, non-invasive or minimally invasive motion capture approaches such as vision-based motion capture systems and angular measurement sensors have emerged, which can be used for in-field kinematics measurements, minimally interfering with on-going work. Given that these approaches have pros and cons for kinematic measurement due to adopted sensors and algorithms, an in-depth understanding of the performance of each approach will support better decisions for their adoption in construction. With this background, the authors evaluate the performance of vision-based (RGB-D sensor-, stereovision camera-, and multiple camera-based) and an angular measurement sensor-based (i.e., an optical encoder) approach to measure body angles through experimental testing. Specifically, measured body angles from these approaches were compared with the ones obtained from a marker-based motion capture system that has less than 0.1 mm of errors. The results showed that vision-based approaches have about 5-10 degrees of error in body angles, while an angular measurement sensor-based approach measured body angles with about 3 degrees of error during diverse tasks. The results indicate that, in general, these approaches can be applicable for diverse ergonomic methods to identify potential safety and health risks, such as rough postural assessment, time and motion study or trajectory analysis where some errors in motion data would not significantly sacrifice their reliability. Combined with relatively accurate angular measurement sensors, vision-based motion capture approaches also have great potential to enable us to perform in-depth physical demand analysis such as biomechanical analysis that requires full-body motion data, even though further improvement of accuracy is necessary. Additionally, understanding of body kinematics of workers would enable ergonomic mechanical design for automated machines and assistive robots that helps to reduce physical demands while supporting workers' capabilities.
机译:由于施工中对身体的要求很高,因此工人面临重大的安全和健康风险。在执行任务时测量和评估人体运动有助于确定过度的身体需求的根本原因,从而使从业人员能够采取适当的干预措施来减少身体运动。近来,出现了诸如基于视觉的运动捕获系统和角度测量传感器之类的无创或微创运动捕获方法,其可用于现场运动学测量,以最小程度地干扰正在进行的工作。鉴于由于采用了传感器和算法而使这些方法在运动学测量方面具有优缺点,因此对每种方法的性能的深入了解将为在结构中采用它们提供更好的决策。在此背景下,作者评估了基于视觉(RGB-D传感器,立体视觉相机和多相机)和基于角度测量传感器(即光学编码器)的方法来测量人体角度的性能。实验测试。具体来说,将通过这些方法测得的体角与从基于标记的运动捕捉系统获得的体角进行比较,该系统的误差小于0.1 mm。结果表明,基于视觉的方法的体角误差约为5-10度,而基于角度测量传感器的方法在各种任务中的体角误差约为3度。结果表明,通常,这些方法可适用于各种人体工程学方法,以识别潜在的安全和健康风险,例如粗略的姿势评估,时间和运动研究或轨迹分析,其中运动数据中的某些错误不会显着牺牲其可靠性。 。与相对准确的角度测量传感器相结合,基于视觉的运动捕获方法也具有巨大的潜力,即使需要进一步提高准确性,我们也可以进行深入的物理需求分析,例如需要全身运动数据的生物力学分析。此外,对工人身体运动学的理解将有助于实现自动化机器和辅助机器人的人体工程学机械设计,从而有助于在支持工人能力的同时减少身体需求。

著录项

  • 来源
    《Robotica》 |2019年第5期|928-946|共19页
  • 作者单位

    Hong Kong Polytech Univ, Dept Bldg & Real Estate, Hong Kong, Peoples R China;

    Univ Waterloo, Dept Syst Design Engn, Waterloo, ON, Canada;

    Univ Michigan, Dept Civil & Environm Engn, Ann Arbor, MI 48109 USA;

    Univ Waterloo, Dept Syst Design Engn, Waterloo, ON, Canada;

    Univ Waterloo, Dept Civil & Environm Engn, Waterloo, ON, Canada;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Body kinematics; Motion capture; Construction;

    机译:人体运动学;运动捕捉;构造;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号