首页> 外文期刊>Robotica >High-Gain Observer-Based Neural Adaptive Feedback Linearizing Control of a Team ofWheeled Mobile Robots
【24h】

High-Gain Observer-Based Neural Adaptive Feedback Linearizing Control of a Team ofWheeled Mobile Robots

机译:轮式移动机器人团队基于高增益观测器的神经自适应反馈线性化控制

获取原文
获取原文并翻译 | 示例

摘要

This paper addresses the neural network (NN) output feedback formation tracking control of nonholonomic wheeled mobile robots (WMRs) with limited voltage input. A desired formation is achieved based on the leader-follower strategy utilizing hyperbolic tangent saturation functions to reduce the risk of actuator saturation. The controller is developed by incorporating the high-gain observer and radial basis function (RBF) NNs using the inverse dynamics control technique. The high-gain observer is introduced to estimate velocities of the followers. The RBF NN preserves the robustness of the proposed controller against uncertain nonlinearities. The adaptive laws are also combined by a robust control term to estimate the weights of RBF NN, approximation errors, and bounds of unknown time-variant environmental disturbances. A Lyapunov-based stability analysis proves that all signals of the closed-loop system are bounded, and tracking errors are uniformly ultimately bounded. Finally, some simulations are carried out to show the effectiveness of the proposed controller for a number of WMRs.
机译:本文研究了具有有限电压输入的非完整轮式移动机器人(WMR)的神经网络(NN)输出反馈形成跟踪控制。基于前导跟随策略,利用双曲正切饱和函数来减少执行器饱和的风险,从而实现了所需的构造。通过使用逆动力学控制技术结合高增益观测器和径向基函数(RBF)神经网络来开发控制器。引入高增益观察器以估计跟随者的速度。 RBF NN保留了所提出控制器针对不确定非线性的鲁棒性。自适应定律还通过鲁棒控制项进行组合,以估计RBF NN的权重,近似误差以及未知的时变环境干扰的范围。基于李雅普诺夫的稳定性分析证明闭环系统的所有信号都是有界的,并且跟踪误差最终是有界的。最后,进行了一些仿真,以显示所提出的控制器对许多WMR的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号